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Abstract 

 

In this review, we report the results of numerical investigations of the dynamical behav-

ior of an integrated device composed by a semiconductor laser and different cavities that pro-

vide optical feedback. Due to the influence of the feedback, under the appropriate conditions 

the systems display chaotic behavior appropriate for chaos based communications. The opti-

mal conditions for chaos generation are identified. It is found that the longitudinal double cav-

ity feedback requires lower feedback strengths for developing high complexity chaos as 

compared with a single cavity. The synchronization of two unidirectional coupled (master-

slave) systems and the influence of parameters mismatch on the synchronization quality are 

also studied. Examples of message encoding and decoding within chaos modulation technique 

for longitudinal double cavity optical feedback are presented and discussed. We find that the 

resynchronization time for the T-like double cavity optical feedback scheme can be two or-

ders of magnitude shorter as compared with that of the single-cavity feedback case. Very 

good conditions for message encoding by using the on/off phase shift keying encryption 

method are identified, and examples of message encoding/decoding are presented. 

 

1. Introduction 

 

The synchronization of chaotic oscillators has been a subject of deep studies in the last 

years due to its fundamental and applied properties [1]. In terms of application, chaos based 

communications have become an option to improve privacy and security in data transmission, 

especially after the recent field demonstration on the metropolitan fiber networks of Ath-

ens [2]. In optical chaos based communications, the chaotic waveform is generated by using 

semiconductor lasers with either all-optical [3-7] or electro-optical [8-10] feedback loops. In 

particular, semiconductor lasers subject to the influence of optical feedback from a distant 

mirror have been investigated extensively for the past two decades, and different dynamical 

behaviors have been characterized, including periodic and quasi-periodic pulsations, low fre-

quency fluctuations, and coherent collapse (for more detail, see Ref. [11]). In the Conven-

tional all-Optical Feedback case (COF) typically, to achieve chaotic behavior a delay round 

trip time of at least a few hundreds of ps is needed. So, in the air, the external cavity should be 

about a few cm long, which is a drawback for the design of compact chaotic sources. Inte-

grated lasers with ultra-short feedback cavities have also revealed similar characteristics if the 



V.Z. Tronciu 
 

 51

feedback is properly amplified [12]. In this context, multi-section lasers with an amplified 

feedback section could be suitable candidates for integrated chaotic emitters. Due to the con-

tinuing technological progress, multi-section lasers have stable and compact configurations, 

which include integrated sections with common waveguides and a tunable phase shift [13]. 

However, the simplest configuration, a two-section laser with one active section and one pas-

sive section acting as an external cavity, is not suitable since the length of the passive section 

is typically too short to achieve chaotic dynamics. 

Lasers subject to feedback from two cavities have been considered in several configura-

tions [14-18]. In particular, feedback from a second cavity has been used to control the chaotic 

dynamics of semiconductor lasers with optical feedback. Control in the low frequency fluctua-

tion regime has been achieved by adjusting properly both the length and the feedback strength 

of the second external cavity. Configurations using Fabry-Perot resonators to provide feedback 

have also been studied [19, 20]. In this case, the feedback can destabilize the laser emission but 

can also improve the stability of continuous wave (CW) emission by enhancing the damping of 

relaxation oscillations or allowing the control of the chip in a non-invasive way. 

Several ways for encoding and decoding a message within the chaotic carrier has been 

proposed in the literature, including chaos modulation [3], chaos shift keying [21], chaos 

masking [22], etc. Here we consider two kinds; the chaos modulation (CM) technique applied 

to longitudinal double cavity feedback scheme and On/Off Phase Shift Keying (OOPSK) 

method applied to T-like double cavity optical feedback setup (see Fig. 1). Finally, we men-

tion that this review summarizes and completes the main results of [23] and [24]. 
 

 
Fig. 1. Different schemes of message encryption. 

 

The paper is structured as follows. In Section 2 we introduce an appropriate model to 

describe the dynamics of semiconductor laser under the influence of the longitudinal double 

cavity feedback (LDCF). We study the synchronization of two of such systems. The influence 

of the mismatch in the feedback phases on the synchronization quality is also discussed. Sec-

tion 3 presents a study of the dynamics of a laser under the influence of a T-like double cavity 

optical feedback (TDCF). We highlight the advantages of the proposed setup when compared 

with the COF case and the OOPSK encryption method is demonstrated for the TDCF. The 

summary and conclusions are given in Section 4. 

 

2. Longitudinal double cavity feedback. Chaos modulation technique 

 

In this Section, we consider an integrated device composed of a semiconductor laser sub-

ject to feedback from a double cavity grown in longitudinal direction with the aim of generat-



Moldavian Journal of the Physical Sciences, Vol.9, N1, 2010 
 

 52

ing a complex chaotic waveform suitable for applications in chaos based communications. The 

scheme of the system is depicted in Fig. 2. It consists of a single mode semiconductor laser 

coupled to an external passive cavity of the same III-V material through an air gap. Here we 

choose two external cavities (air gap and III-V material) of the same length, in this case 1 cm. 

To avoid diffraction losses in the air cavity, a micro lens should be placed at the laser facet to 

collimate the beam (not shown in our set-up). Assuming a refractive index of 3 for the mate-

rial, the total delay time in the two cavities amounts approximately 0.266 ns. The advantage of 

this longitudinal double cavity configuration is the existence of two feedback phases, one in 

the air gap cavity and one in the material cavity, the latter can be easily adjusted to destabilize 

the dynamics of the laser. Moreover, while we assume that the first reflectivity is defined by 

the air-material facet, the outer facet of the material cavity can be coated to increase its reflec-

tivity. We study the conditions for which the behavior of the system is chaotic due to the influ-

ence on the laser dynamics of the feedback from the double cavity. We also study the 

synchronization of two such systems under unidirectional coupling. In the absence of coupling, 

the behavior of transmitter and receiver systems is uncorrelated. When a certain amount of 

light is injected from the transmitter into the receiver, the latter is able to synchronize to the 

emitter under the appropriate conditions. Typically, the receiver does not synchronize identi-

cally to the emitter due to the injected field. Therefore, synchronization is not complete but 

generalized [25]. Synchronization is robust to small perturbations of the carrier. A message of 

small amplitude can then be included in the carrier which will be filtered-out by the receiver. 

As mentioned above, several message-encoding schemes have been proposed in the literature. 

Here we include the message as a modulation in the amplitude of the chaotic carrier (chaos 

modulation) [3] (see Fig. 1). The message can be decoded at the receiver by comparing its in-

put (carrier mixed with message) with its output (which ideally reproduces only the carrier). 

 

 
 

Fig. 2. A sketch of the proposed setup for chaos synchronization and message encoding, using 

semiconductor lasers under the influence of a feedback from a double cavity grown in longitudinal 

direction. 
1R  and 

2R  are the reflectivity of the air-material facet and the outer facet of the material 

cavity, respectively. The length of the air cavity l and the material cavity L are taken to be the 

same: 1cm,L l= = 3Ln = ; 
0ω  is the free running frequency of CW laser. 

 

2.1. Model and equations 

 

To model the set-up shown in Fig. 2 we consider a single mode CW laser coupled to a lon-

gitudinal double cavity. The first mirror is located at distance l from the laser facet. The distance 

between the first and second mirror is L. The optical feedback phase in the second cavity ψ  can 

be controlled by injecting current into the passive section. We assume that the current injected in 
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the passive section is small enough to affect only the refractive index, so that the optical length of 

the resonator is changed in the sub-wavelength range. In this way, while the feedback phase ψ  

can be tuned, the change in the delay time between the two mirrors Lτ  is negligible. Alternatively, 

this phase could be also controlled with a piezo actuator. In principle, multiple reflections may 

take place. However, for the feedback parameters we will use, it is sufficient to consider a single 

reflection in both cavities. This approximation strongly simplifies the calculations. 

The laser dynamics can be analyzed in the framework of the extended Lang-Kobayashi 

equations for the complex field amplitude E and an excess carrier density N [26, 27] 
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where the feedback term is written as 
( )

1, 1 , 2, 2 ,( ) ( ( ))i i

LDCF t r t r l t r t r l LF e E t e E tϕ ϕ ψγ τ γ τ τ− − += − + − + .     (2) 

The subscripts t and r refer to transmitter and receiver lasers, respectively. The last term in 

equation (1) is present only in the receiver laser and describes the unidirectional coupling; rk  

is the coupling parameter of the injected field into the receiver laser given by 

( )1r ext cR Rκ η τ= − , where R is the facet power reflectivity of the slave laser (R = 30%), 

cτ  is the cavity roundtrip time of the light within the laser ( 10 ps),cτ =  extη  accounts for 

losses different than those introduced by the laser facet ( 0.5)extη = ; lτ  and Lτ  are the air gap 

and passive material roundtrip times, respectively; 1, 1t rγ  and 2, 2t rγ  are the feedback strengths 

governed by the reflectivity 1R  and 2R , respectively. For simplicity, we assume R1 and R2 

such that 1 2 1 2t t r rγ γ γ γ γ= = = = ; 0 lϕ ω τ=  (whose value can strongly vary in different de-

vices), and 0 Lψ ω τ= are the optical phase accumulated in the air gap and material cavities, 

respectively. The other parameter values are the linewidth enhancement factor α = 5, the dif-

ferential gain parameter 8 11.5 10 psg − −= × , the gain saturation coefficient 75 10ε −= × , the pho-

ton and carrier lifetimes τph = 3 ps and τe = 2 ns, respectively, and the round trip times τl = 

0.066 ns and τL = 0.2 ns. The injected current is fixed at 50 mAI =  (the threshold current 

Ith = 11.5 mA) and the currier number at the transparency at 8

0 1.2 10N = × . The parameter val-

ues are used for the calculated results that are shown in all figures of the paper. 

 

2.2. Stationary states 

 

In the subsequent analysis, we consider the stationary lasing states of system (1)-(2). 

They are given by rotating wave solutions, usually called External Cavity Modes (ECMs) 
ti

S
SeEtE

ω=)( , SN N= .      (3) 

By substituting (3) into (1)-(2), we obtain the transcendental equation for the emission fre-

quency Sω  

[ ]
[ ]

( ) cos( ) cos( ( )

sin( ) sin( ( )) ,

S S S l S l L

S l S l L

F ω ω αγ ϕ ω τ ϕ ψ ω τ τ

γ ϕ ω τ ϕ ψ ω τ τ

= − + − + − + + + −

− + + + + +
  (4) 
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Sω  is obtained from ( ) 0SF ω = . Finally, Es and Ns can be obtained by substituting the value of 

ωS into (1) and (2) and by setting roots to zero. 

When only one cavity is present (COF), eq. (4) provides a finite number of solutions 

which are located on top of an ellipse in the NS vs. ωS plane. This elliptical locus for the solu-

tions is independent of the feedback phase ωSτ, being τ the external cavity round trip time. 

The feedback phase then determines the exact number of solutions as well as its precise loca-

tion on the ellipse. If the feedback phase is changed, the location of the solutions moves 

around the ellipse. 

In contrast to the COF case, the feedback from Fabry-Perot resonator implies a non el-

liptic location of modes [19]. For different phases ϕ , the location of the ECMs moves along 

an eight-shape figure, with the solitary laser mode located in the waist. The nature of the bi-

furcations and the stability of the solutions for the resonant feedback from FPR have been 

analyzed in more detail in [19]. 

The situation is again different for the case of LDCF. The solid lines in Fig. 3 show the 

locus of ECMs in the plane ( S SN ω− ) for two different levels of feedback strength and three 

different values of one of the feedback phases, ϕ . The other feedback phase, ψ , determines 

then the exact number of solutions and its precise location of the solutions on the geometrical 

locus shown in Fig. 3. We first consider small feedback strength 15 nsγ −=  (left column in 

Fig. 3). For / 2ϕ π= − , the location of the fixed points is similar to that of COF case, i.e., the 

modes are located on the ellipse although now the ellipse is distorted (see Fig. 3a left). Different 

symbols show the precise location of ECMs at particular feedback phases ψ . Note that the 

number of ECM depends on the values of the feedback phase. For ψ π= −  two modes and one 

anti-mode coexist (circles). On the other hand, only one mode is present for 0ψ = (triangle) and 

/ 4ψ π= (square). For / 6ϕ π=  the system exhibits almost the tilted eight-shape (see Fig. 3b 

left) which is similar to that found in a Fabry–Perot resonator [18]. Although the level of feed-

back is still the same as before, the number of solutions has increased for all the values of the 

feedback phase ψ . Note also that the size of the locus for the ECMs is clearly larger than in the 

previous case. Finally, for / 2ϕ π=  the tilted eight shape opens in the center leading to a “pea-

nut” shape for the locus of the ECMs (see Fig. 3c left). The overall size of the locus, as well as 

the approximate number of solutions, is the same as for / 6ϕ π= . This clearly illustrates that, in 

the case of the LDCF, the location of the modes becomes more complicated as compared with 

that of COF. When the feedback strength is increased to 115 nsγ −= (right column in Fig. 3) 

new satellite bubbles of ECMs appear on left and right sides of the deformed ellipse. The differ-

ent satellite bubbles span for a range of frequencies which is much larger than for the weak 

feedback case 15 nsγ −= . The onset of these bubbles reflects the existence of frequency gaps for 

which no ECM solutions exist. These frequency gaps are originated from destructive interfer-

ence in the feedback coming from the two cavities. Figure 4a shows the total reflected light for 

the parameters corresponding to the right panel of Fig. 3a. Within the range of frequencies in 

which ECM solutions are found, there are two regions of vanishing reflected light which corre-

spond to the two regions that separate the three bubbles shown in the right panel of Fig. 3a. 

The interference of the feedback from the two cavities leads to an effective vanishing 

feedback, so there are no external cavity modes. Figure 4b shows the value of the roots of 

Eq. (4) for the parameters of the left panel of Fig. 3a and φ= -π/2. It can be seen as a fast os-

cillatory behavior on the top of a slower one. The fast and slow oscillatory periods are deter-

mined by the two feedback times. The intersection of this curve with the diagonal signals the 
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solutions of Eq. (4). As γ  increases, the amplitude of the oscillations becomes larger and 

therefore more ECMs exist for any given value of the feedback phases. The feedback strength 

increase leads also to the emergence of additional isles of ECMs. The precise location of the 

bubbles and their shape depend on the feedback phase as shown in the right column of Fig. 3. 
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Fig. 3. Locus of the ECMs in the plane (

S SN ω− ) for different phases: (a) / 2ϕ π= − , (b) 

/ 6ϕ π= , and (c) / 2ϕ π=  and two levels of feedback strength: 
15 nsγ −=  (left) and 

115 nsγ −=  

(right). Symbols indicate the external cavity modes for a specific value of the feedback phase ψ . 
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Fig. 4. Reflection spectrum of a double cavity with 

115 nsγ −=  (a) and graphical solution of (4) 

(b) for 
115 nsγ −= , / 2ϕ π= − , and / 4ψ π= . The circles indicate the modes. 
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2.3. Chaotic behavior of the LDCF transmitter laser 

 

For feedback strength small enough, a laser under the influence of COF or LDCF shows 

either CW or pulsating operation. Chaotic behavior appears as the feedback strength is in-

creased. Figure 5 illustrates typical time traces (left) and the power spectra (right) of a semi-

conductor laser under the influence of COF and LDCF for identical laser parameters in the 

chaotic regime. It can be observed that the LDCF makes the laser behavior more complex. 

This fact was further confirmed by calculation of the autocorrelation time from Eqs. (3) 

2

0
( )c iiT dτ τ

∞
= Γ∫  and (4) ( )( ) ( ) ( )22

( ) ( ) ( ) ( ) ( )ij i i j j i i j jP t P P t P P t P P t Pτ τΓ = − − − − −  

of [12]. These calculations yield to 1.0≈COF

cT ns and 037.0≈DCF

cT ns. Moreover, larger am-

plitude fluctuations when compared with COF can be observed. 
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Fig. 5. A typical optical power time trace (left) and the power spectrum (right) of a semiconduc-

tor laser under the influence of (a) COF for 
130 nsγ −= , / 2ϕ π= − , 0.266 nsτ =  and (b) DCF for 

1

1 2 30 nsγ γ −= = , / 2ϕ π= − , ψ π= , 0.266 nsl Lτ τ τ= + = , 0.066 nslτ = , 0.2 nsLτ = . 

 

Figure 6 displays the bifurcation diagrams of the semiconductor laser subject to LDCF for 

two feedback phases. As the feedback strength is increased, several instabilities take place. For a 

given value of the feedback strength, the figure displays the values of all the local maxima of the 

time traces of the emitted power. Considering / 2ϕ π= − andψ π= , for low values of the feed-

back strength, CW operation is observed, which is depicted as a single value for the maxima of 

the power in Fig. 6a. At the feedback strength 110 nsγ −=  a Hopf bifurcation appears and the out-

put power develops an oscillatory behavior. Since the oscillations are periodic, for a given feed-

back strength, all the local maxima of the output power have the same value and consequently a 

single point appears in Fig. 6. The Hopf bifurcation is supercritical and, as expected, the oscilla-

tion amplitude grows with the square root of the distance from the bifurcation point. As the feed-

back strength is further increased, a scenario compatible with quasi-periodic route to chaos is 

obtained. However, the range and amplitude of this behavior are small. When the feedback 

strength reaches the value 115 nsγ −= , a jump to a new P periodic operation region is observed. 

As the feedback strength increases, a second scenario compatible with quasi-periodic route to 

chaos appears. For large values of the feedback strength, the system exhibits a chaotic behavior. 
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Fig. 6. Numerical bifurcation diagrams for different values of phases: (a) / 2,ϕ π= −  ψ π=  

and (b) / 2,ϕ π=  / 4ψ π= . CW shows the continuous-wave operation, the circle H indicates Hopf 

bifurcation, and P shows the peak of stable periodic solution. 

 

For / 2ϕ π= and / 4ψ π=  (see Fig. 6b) the system behavior is slightly different; the 

Hopf bifurcation is shifted to a lower feedback level involving the appearance of low ampli-

tude chaotic behavior for low feedback strengths followed by the CW operation and a scenario 

compatible with quasi-periodic route to chaos. We mention that the numerical calculations 

show that, in this parameter region and for any value of the feedback strength larger than 
125 ns−  and combination of phases ϕ  and ψ , the laser behavior is chaotic and robust. 

 

2.4. Synchronization and mismatch in the laser parameters 

 

In the previous section, we have clarified different aspects of the dynamics of a semicon-

ductor laser with integrated DCF for obtaining chaotic behaviors. In what follows, we are in-

terested in the transmitter–receiver configuration and in the evaluation of their synchronization 

properties. Synchronization can be quantified by measuring the cross correlation coefficient: 

( )( ) ( ) / ( ) ( )m s m mC P t P t P t P t =  .           (5) 

Figure 7 shows the emitted power of slave system versus the power of the master (synchroni-

zation diagram) for feedback strength 130 nsγ −= and different levels of the coupling parame-

ter k . We first consider the case of identical Master and Slave systems, so we take the same 

parameter values for both of them. When the coupling parameter is equal to zero, as shown in 

Fig. 7a, the trajectories of the master and slave lasers depart from each other and the synchro-

nization map is a cloud of points showing the lack of correlation between outputs. Upon in-

creasing the coupling until 1100 ns− , the synchronization improves and cross correlation 

coefficient increases approaching one (see Fig. 7c). 

Figure 8 shows the dependence of the synchronization quality as a function of the feed-

back phases. It displays the value of the correlation function in the parameter space ( )ϕ ψ−  

for feedback strength 130 nsγ −=  and coupling coefficient 175 nsκ −= . It can be clearly seen 

that the region of high correlation coefficients is wide while regions of low correlation hardly 

appear. The white star in Fig. 8 corresponds to the operating point that will be considered for 

message encoding and decoding in the next section. 
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Fig. 7. Synchronization diagrams for different levels of the coupling parameter k : (a) 10 nsk −=  

(the systems are uncorrelated), (b) 
150 nsk −=  (C=0.75), and (c) 

1100 nsk −=  (C=0.9995). The feed-

back strength is taken as 
130 nsγ −=  and the feedback phases are / 2ϕ π= − and ψ π= . 
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Fig. 8. Cross correlation coefficient as a function of the feedback phases for 
130 nsγ −=  and 

175 nsκ −= . The white star is the operating point for the message encoding and decoding. 

 

It is well known that the quality of the synchronization depends on the similarity be-

tween master and slave lasers. The influence of the internal laser parameters mismatch on the 

synchronization quality has been studied in [22, 28], so here we focus on the influence of the 

mismatch on the two feedback phases. Figure 9 shows the dependence of cross correlation 

coefficient on the phase difference (phase master–phase slave) for feedback 

strength 130 nsγ −= and coupling strength 175 nsk −=  (a) and 1100 nsk −=  (b). The solid line 

shows the degradation of the synchronization due to a mismatch in the material cavity feed-

back phase. We take m Sϕ ϕ π= =  and 0sψ =  while mψ  is varied from 0 to π . The dotted 

line shows the effect of a mismatch in the air cavity feedback phase. We consider 

s mψ ψ π= =  and 0Sϕ =  while mϕ  is varied from 0 to π . When the feedback phases coin-

cide, the system exhibits perfect synchronization with C ~ 1 cross-correlation coefficient. An 

increase of the mismatch in any of the feedback phases induces a degradation of the synchro-

nization which is indicated by a reduction of the cross correlation coefficient. For small mis-

match, the degradation of the correlation is similar for the mismatch in any of the two phases. 
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As the mismatch is increased, the degradation is clearly more severe in the case of mismatch 

in the feedback phase of the air cavity ϕ . 

This may be understood from the fact that ϕ  is the phase of a shorter cavity and, in gen-

eral, short cavities are more sensitive to phase variations than long cavities. For larger values 

of the coupling strength, the effect of the mismatch in the feedback phases is smaller and there-

fore the cross-correlation coefficient decreases slower as the mismatch is increased. High val-

ues of the cross-correlation coefficient are usually required for efficient message encoding and 

decoding, therefore, the mismatch in the feedback phases should not exceed 0.1/π . Alterna-

tively, a small airgap phase mismatch can be compensated adjusting the material phase ψ  of 

the slave laser. Figure 9c shows an example of this compensation. The mismatch in the airgap 

phase is 2.5% (point B in Fig. 9a), and a very good correlation can be achieved (point C). 
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Fig. 9. Cross correlation coefficient as a function of the feedback phase difference (phase mas-

ter–phase slave) for coupling 
175 nsk −=  (a), to 

1100 nsk −=  (b). Panel (c) shows the cross correlation 

coefficient for 
m Sϕ ϕ π= = , and 0mψ =  as a function of the material phase for the slave laser 

sψ . 

For both master and slave systems, the feedback strength was taken as 
130 nsγ −=  (from [23]). 

 

2.5. Message transmission 

 

In this section, we consider the use of these integrated devices for message encoding 

and decoding in chaos based communications. A message is encoded as a small amplitude 

modulation of the emitted field of the master, so that the signal transmitted to the receiver is 

(1 ( ))T tE E m tς= + ,       (6) 

where ( )m t  is the message and ς  is the message amplitude. In the receiver system, a message 

is decoded comparing the input of the receiver with its output, which is ideally synchronized 

to the carrier 

/ 1decoded T SM P P= − .          (7) 

Figure 10 illustrates the transmission of a non return to zero pseudorandom message. The sys-

tem parameters correspond to the operating point shown by the white star in Fig. 8. Panel (a) 

shows the input message. Panels (b) and (c) show the chaotic carrier without the message and 

the transmitted signal (carrier with message). Panel (d) shows the decoded message as indi-

cated in Eq. (7), and filtered by an appropriate low-pass filter [29]. As can be seen from the 

figure, the message is well recovered. Panel (e) shows the recovered message for a 2.5% mis-
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match in the airgap phases between master and slave lasers. It can be clearly seen that a part 

of message cannot be recovered. On the other hand the airgap phase mismatch can be com-

pensated by the controllable phase of slave laser. As can be seen in panel (f), the message is 

now well recovered. 
 

  

 
Fig. 10. Numerical results of en-

coding and decoding of a 2.5 Gbit/s 

digital message for a closed loop 

scheme [23]: (a) encoded message, (b) 

output of master laser, (c) output of 

master laser with message, (d) recov-

ered message after filtering (solid line) 

and input message (dotted line) for 

identical parameters for master and 

slave lasers (point A in Fig. 9a), (e) re-

covered message (solid line) after filter-

ing for lasers with 2.5% mismatch of 

airgap phases (point B in Fig. 9a), (f) 

recovered message (solid line) after 

filtering for lasers with 2.5% mismatch 

of airgap phases but the slave air gap 

phase is compensated by a different ψs 

phase (point C in Fig. 9c). Parameters 
130 nsγ −= , 

175 nsκ −= , / 2ϕ π= − , 

ψ π= , 0.066 nslτ = , 0.2 nsLτ = . 

 

 

It is noteworthy that these simple examples of the chaos modulation encoding technique, 

within a chaotic waveform, obtained from a double cavity feedback are efficient and simple and 

could be easily applied to a chaos-based communication system by using an external modulation. 
 

3. T-like double cavity optical feedback. On/off phase shift keying method 
 

One of the most attractive schemes in terms of security is the OOPSK method [21, 30] 

where the codification is achieved by slight modulating the phase of the optical feedback of the 

emitter (see Fig. 1). The physical basis for OOPSK is that the synchronization behavior of the 

receiver acts as a sensitive detector for variations of the transmitter feedback phase: suitable dis-

crete changes yield the dynamics of the receiver to jump between synchronized and de-

synchronized states. In contrast to these drastic changes in the receiver dynamics, changes in the 

emitter dynamics should be noticeable neither in the intensity dynamics nor in the RF nor optical 

spectra. The principle of the ON/OFF phase shift keying encryption is as follows. The message is 

encoded by switching between two states of the master system that yield highly correlated (syn-

chronized) states (Bit “0”) or less correlated (desynchronized) states (Bit “1”) in the receiver sys-

tem. Hence, the message can be simply recovered by monitoring the synchronization error. The 

controlled variations in the master system can be accomplished by inserting, e.g., an electrooptical 

modulator within the external cavity of the transmitter. The message is decoded by detecting 

whether the receiver synchronizes or not with the input carrier [26]. Up to now, this technique has 

the disadvantage that the maximum modulation rate is only a few tens of Mbit/s [21, 30, 31]. 
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3.1. Laser and feedback model 
 

The proposed setup for implementation of OOPSK method is depicted schematically in 

Fig. 11. It consists of a semiconductor laser coupled to the external reflectors 1R  and 2R , that 

could be implemented, e.g., by using two fiber cavities. The advantage of the proposed 

scheme is that we can control two feedback strengths, two feedback phases, and two delay 

times independently. The feedback branch governed by reflectivity 1R  is called conventional 

feedback branch (CFB); the one governed by 2R , the modulated feedback branch (MFB). As-

suming fiber based cavities with a refractive index of 1.5, we consider the delay time in the 

CFB to be 0.5 nslτ =  and that of MFB 0.3 nsLτ = . In the model, we only account for single 

reflexions in both branches. In the absence of coupling, the correlation between the transmit-

ter and receiver outputs is negligible. When a certain amount of light from the transmitter is 

injected into the receiver, the latter is able to synchronize to the emitter under appropriate 

conditions. Once synchronized, a message can be encoded into the carrier. At the receiver 

side, the message can be recovered via the chaos pass filtering process [29]. 

The laser dynamics is analyzed in the framework of the extended Lang-Kobayashi equa-

tions well explained in Section 2 with the following feedback term 

1 , 1 2 , 2( ) ( )i i

TDCF t r t rF e E t e E tϕ ψγ τ γ τ= − + − .     (8) 

The cavity roundtrip time of the light within the laser is ( 8.5 ps),cτ =  extη  accounts for losses 

different than those introduced by the laser facet ( 0.5)extη =  resulting in 190 nsκ −= ; 1τ  and 

2τ  are roundtrip time in the CFB and MFB, respectively; 1γ  and 2γ  are the feedback 

strengths governed by the reflectivities 1R  and 2R , respectively; 0 lϕ ω τ=  and 0 Lψ ω τ=  are 

the accumulated optical phases in the CFB and MFB, respectively, which, without loss of 

generality, can be assumed to take values between 0 and 2π. The other parameter values are: 

the linewidth enhancement factor 5α = , the differential gain parameter 5 11.5 10 nsg − −= × , the 

gain saturation coefficient 74 10s −= × , the photon and carrier lifetimes 2 psphτ =  and 

2.0 nseτ = , respectively, and the carrier number at the transparency N0=1.5x10
8
. These pa-

rameters, which are considered identical for both lasers, are used for the calculated results 

shown in all figures in the paper. The injection current is fixed at 45 mAI =  (Ith=14.7 mA). 

For the model given by equations (8) and (9), if 1 2τ τ=  the feedback term in (8) can be re-

duced to a COF term with an equivalent feedback coefficient given by 1 2

i i ie e eϕ ϕ ψγ γ γ= +ɶ
ɶ . 

 

 
Fig. 11. Setup under study: a laser with fiber-based external cavities. The cavity lengths are l = 

0.05 m (
1τ  = 0.5 ns) and L = 0.03 m (

2τ  = 0.3 ns). The refractive index of the optical fiber is n = 1.5. 
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3.2. TDCF transmitter laser dynamics 

 

In this section, we discuss the behavior of a semiconductor laser under the influence of a 

TDCF. For feedback strengths small enough, semiconductor lasers under the influence of ei-

ther COF or TDCF show CW or pulsating operations. Chaotic behavior appears if the feed-

back strength is increased enough. Figure 12b illustrates typical time traces (left) and the 

power spectra (right) of a laser under the influence of a DCF operating in a robust chaotic re-

gime. We mention that the behavior shown in Fig. 12a is similar to that of a laser under the 

influence of COF with 1

1 40 nsγ −= , 0.5 nsτ =  and identical laser parameters. It is well 

known that the autocorrelation time is related to the complexity of the generated chaos. The 

correlation time accounts for the complexity of the generated chaos. The shorter is the correla-

tion time, the more chaotic and less predictable is the dynamics. The calculations of the auto-

correlation time for the traces shown in Figs. 12a and 12b [12] yield similar result for both 

COF and TDCF with values of Tac
COF

 ~ Tac
TDCF

 ~ 100 ps for our parameter values. 

A confirmation of this property is given below. Figure 13a shows the autocorrelation 

time as a function of feedback strength for COF for 0.5 nsτ =  (solid line) and 2 nsτ =  (dot-

ted line). It can be clearly seen that, as the feedback strength and delay time are increased, the 

autocorrelation time decreases; this is an indication that the laser dynamics becomes more 

chaotic. Figure 13b shows the calculated autocorrelation time for a laser under the influence 

of a TDCF. The feedback strength of CFB is fixed to 1

1 30 nsγ −=  while that of MFB is var-

ied. For zero MFB strength, the resynchronization and autocorrelation times coincide with 

that of COF for 130 nsγ −= . An increase in feedback strength of MFB leads to a decrease in 

autocorrelation time up to 0.1 ns similar to that of COF. However, when the MFB is intro-

duced, the resynchronization time can be expected to become much shorter as a result of only 

distortion of the chaotic attractor generated by the CFB. 
 

 
 

Fig. 12. Time traces of the output power P (left) and the power spectrum (right) for (a) COF at 
140 nsγ −= , 0.5 nsτ = , and 0ϕ =  and for (b) TDCF at 1

1 30 nsγ −= , 1

2 10 nsγ −= , 
1 0.5 nsτ = , 

2 0.3 nsτ = , 0ϕ = , and / 2ψ π= . 
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Fig. 13. The autocorrelation time as a function of feedback strength for (a) COF at 0ϕ =  and differ-

ent values of delay time and (b) TDCF of MFB at 1

1 30 nsγ −= , ϕ  = 0, ψ  = / 2π , 
1τ = 0.5 ns, 

2τ = 0.3 ns. 

 

Figure 14a displays a typical bifurcation diagram of a semiconductor laser under the in-

fluence of COF with the feedback strength acting as a bifurcation parameter and 0.5 nsτ = , 

0ϕ = . As the feedback strength is increased, several bifurcations take place. For each value of 

the feedback strength, the figure displays the values of the maxima of the time traces of the 

emitted power. It is well known that, as the feedback strength is increased, a scenario com-

patible with quasi-periodic route to chaos appears [32]. 

Figures 14b and 14c display the bifurcation diagrams of a semiconductor laser subject to 

DCF for the feedback strength and feedback phase acting as bifurcation parameters. Let us con-

sider, e.g., the case of feedback strength for the CFB fixed to 1

1 30 nsγ −=  while the feedback 

strength of MFB is increased. Considering 0ϕ =  and / 2ψ π= , as shown in Fig. 14b, even for 

low values of the feedback strength 2γ  the dy-

namics of the laser is already chaotic due to the 

influence of the feedback of CFB. It can be no-

ticed from the figure that the amplitude of the 

chaotic oscillations slightly increases with the 

feedback strength 
2γ  (see Fig. 14b). When both 

feedback strengths are fixed to 1

1 30 nsγ −= , 

1

2 10 nsγ −=  and the phase 0ϕ = , as shown in 

Fig. 14c, fully developed chaotic dynamics is 

found for any value of MFB phase ψ . 

 
 

 

Fig. 14. Bifurcation diagram of the output 

power for(a) COF with the feedback strength γ  as 
bifurcation parameter; (b) TDCF with 

2γ  as bifurca-

tion parameter; 1

1 30 nsγ −= , 0ϕ =  and / 2ψ π= ; 

(c) DCF with the MFB phase ψ  as bifurcation pa-

rameter; 1

1 30 nsγ −= , 1

2 10 nsγ −= and 0ϕ = . Each 

dot represents a peak of the output power [24]. 
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3.3. Synchronization and message transmission 

 

So far we have clarified different aspects of the transmitter laser dynamics under a 

TDCF. In what follows, we focus on the transmitter–receiver configuration and evaluate the 

synchronization properties. Since our final aim is to use the auxiliary branch to perform 

OOPSK encryption, it is important to characterize in advance the resynchronization time, i.e., 

the time required by the setup to synchronize when the link between master and slave lasers is 

interrupted. The inverse of the resynchronization time is an estimation of the maximum modu-

lation rate that can be achieved with the OOPSK technique. We estimate the resynchronization 

time as the time needed by the system to achieve a correlation coefficient of 0.98 when starting 

from an initial uncoupled configuration, for which the correlation between emitter and receiver 

is close to zero [24]. Figure 15 shows the resynchronization time as a function of feedback 

strength for a laser under the influence of COF for different values of delay time τ  and differ-

ent coupling coefficient κ in a region where the system displays a chaotic behavior. 

As shown in Fig. 15a, two regimes are observed for delay time 0.5 nsτ = . For γ > κr the 
resynchronization time grows linearly with a small slope and it is on the order of a few round-

trip time. When γ  becomes larger the resynchronization time grows exponentially. This last 

regime appears for 127 nsγ −>  when 160 nsrκ
−=  and for 133 nsγ −>  when 190 nsrκ

−= . The 

separation in the regimes comes from a competition between the coupling strength rκ  and the 

feedback strength γ . For rκ γ>>  the first regime is dominant leading to a small resynchroni-

zation time; when both are similar, there is a transient competition, which induces large re-

synchronization time. Finally, no synchronization is observed for rγ κ>> . Similar behavior is 

observed for a large delay time 2 nsτ =  (see Fig. 15b), although now the resynchronization 

time in the first regime grows linearly with a larger slope. 
 

 
 

Fig. 15. Resynchronization time as a function of feedback strength for COF for 0ϕ =  and the 

delay time 0.5 nsτ =  (a) and 2 nsτ =  (b). Results are obtained from 100 random initial conditions. 

Thick lines show the average resynchronization time, while thin lines show the maximum value of 

those 100 realizations. 

 

Figure 16a shows the calculated resynchronization time for a laser under the influence 

of a TDCF. The feedback strength of CFB is fixed to 1

1 30 nsγ −= , while that of MFB is var-

ied. For zero MFB feedback strength the resynchronization time coincides with that of COF 

for 130 nsγ −= . An increase in the MFB feedback strength up to 1

2 20 nsγ −=  leads only to a 

smooth increase in the resynchronization time up to a value of approximately 7 ns. 
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Fig. 16. Resynchronization recovery time as a function of different parameters (a) the feedback 

strength 
2γ  of MFB for TDCF for 1

1 30 nsγ −= , 0ϕ = , / 2ψ π= , (b) the feedback phase for the COF 

(dashed line) and for the TDCF (solid line). The parameters for the COF are 
140 nsγ −=  and 

0.5 nsτ = . The parameters for the DCF are 1

1 30 nsγ −= , 1

2 10 nsγ −= , 0ϕ = , 
1 0.5 nsτ = , 

2 0.3 nsτ = , 190 nsrκ
−= . 

 

A first comparison of Figs. 15 and 16 shows that TDCF has some advantages over COF. 

When the feedback strength of COF is 140 ns− , the resynchronization time is approximately 

300 ns, while for the DCF with 1

1 30 nsγ −= , 1

2 10 nsγ −= the resynchronization time is ap-

proximately 3 ns (see Fig. 16a). In fact, we have found that, when using the DCF setup, we 

can reduce the resynchronization time by two orders of magnitude as compared with the COF 

setup. This decrease in the resynchronization time can be attributed to the fact that, for low 

feedback strength values, the MFB acts as a weak perturbation of the strong chaotic attractor 

generated by the CFB. This fact yields shorter resynchronization times as compared to the 

COF case. The solid line in Fig. 16b shows the resynchronization time as a function of MFB 

phase ψ  for TDCF, for 1

1 30 nsγ −= , 1

2 10 nsγ −= , ψm = ψS = 0. The dashed line shows the 

resynchronization time as a function of optical feedback phase of the COF case 

for 140 nsγ −= , 0ϕ = . It can be clearly seen from these results that the TDCF system resyn-

chronizes much faster than the COF system for any value of the feedback phase. We have 

checked that these results also hold for any value of the COF phase ψ. 
Now we consider the influence of a mismatch between the phases ψ of the slave laser 

with respect to that of the master laser on the cross correlation coefficient. Figure 17 shows 

the values of this coefficient in the plane ( )s mψ ψ−  for feedback strengths 1

1 30 nsγ −= , 

1

2 10 nsγ −=  and the coupling coefficient 190 nsrκ
−= . 

Other parameters are identical for the master and slave lasers. It can be clearly seen that 

highest correlation coefficients are obtained when the two phases coincide, i.e., 
m sψ ψ= , 

while the correlation degrades when the phases start to be different. Points A and B in Fig. 17 

correspond to the operating points that will be considered later for message encoding and de-

coding using OOPSK encryption. The point A is chosen to have high correlation while the 

point B (or B’) corresponds to a state with low correlation. 
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Fig. 17. Cross correlation coefficient in the ψm - ψs phase space. The other parameters are 
1

1 30 nsγ −= , 1

2 10 nsγ −= , 
190 nsrκ
−= , 0m Sϕ ϕ= = . A high degree of synchronization is charac-

terized by light grey level. Phases are varied in 0.05 radian steps (taken from [26]). 

 

3.4. Message transmission 

 

An important issue in chaos based communication systems is the security of proposed 

setup. Schemes, such as chaos shift keying, chaos masking, and chaos modulation, require 

keeping the message amplitude small enough in order to avoid message recognition. In the 

OOPSK technique, the message is codified by changing the feedback phase of the master la-

ser without introducing significant changes in the time trace or spectrum of the emitted light. 

In this setup, the slave laser for which the feedback phase is kept constant acts as a detector of 

the synchronization quality. When the feedback phases of the emitter and receiver coincide, 

the correlation between the outputs of the two systems is high, while it is low when the phases 

are different (as shown in Fig. 17). In our scheme, the phases ϕ  of the COF branch is kept 

constant in both master and slave lasers while we study the phase shift keying method by 

varying the phase of the auxiliary branch. Figure 18 shows the pulse traces of the master laser 

operating in the chaotic regime at the point A (a) and at point B (b). It can be clearly seen that 

both time traces remain similar to each other. Figure 18c shows the power spectra of the time 

traces shown in Figs. 18a and 18b, while Fig. 18d shows the power spectra of the receiver 

system for the fixed phase ψS = 0.75 rad. 

The power spectra of the emitter system for the operating points A and B, as shown in 

Fig. 18c, remain almost unchanged. On the contrary, the power spectrum of receiver laser 

changes, as shown in Fig. 18d, due to the coupling light that is uncorrelated with that gener-

ated by the receiver system. Figures 8e and 8f show the synchronization error defined as 

( ) /( )m s m sP P P P− +  for different phases. For 0.75 radm sψ ψ= =  (see Fig. 18e) the synchro-

nization error is almost zero and the cross correlation coefficient approaches unity. On the 

other hand, for 0,mψ = 0.75 radSψ =  synchronization degrades, as shown in Fig. 18f, and the 

synchronization error is very high. 
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Fig. 18. (Color online) Calculated pulse traces of the emitter laser at point A (a) and point B (b) 

shown in Fig. 7. Power spectra of the master (c) and slave (d) lasers. Panels (e) and (f) show the syn-

chronization error for 0.75 radm sψ ψ= =  and 0,mψ = 0.75 radSψ = , respectively. Parameters are 

the same as in Fig. 17. 

 

Figure 19 depicts the process of 0.25-Gbit/s message OOPSK encryption. The top panel 

shows the digital message. Figure 19 (central panel) shows the synchronization error when the 

phase of the receiver laser is changed from 0.75 rad (bit “0”) to 0 (bit “1”), i.e., from point A 

to point B in Fig. 17. Figure 19 (bottom panel) shows that the message can be successfully 

recovered after a standard filtering process. Thus, the proposed setup can distinctly increase 

the bit rate compared with that previously obtained in [21]. 

 

 
 

Fig. 19. On/off phase shift keying encoding and decoding of 0.25-Gb/s digital message. Top 

panel: encoded message. Central panel: decoded message represented by the synchronization error. Bot-

tom panel: recovered message after filtering. The other parameters are the same as in Fig. 17 and [24]. 
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4. Conclusions 
 

In this review, we have studied the dynamics of an integrated device composed of a semi-

conductor laser and a longitudinal double cavity that provides delayed optical feedback. The 

double cavity feedback implies the existence of two feedback phases, which can play an impor-

tant role in the dynamics. This extra degree of freedom leads to a more complex behavior, 

which in fact is already indicated when looking for the number and location of the fixed points. 

While in the more conventional case of using a single cavity, these steady states are located on 

the top of an ellipse in the ( )S SN ω−  plane, the ellipse in the double cavity case can be strongly 

distorted and can break into several bubbles. The number of coexisting steady states is also in-

creased in the case of double cavity feedback, and chaotic behavior is found for lower values of 

the feedback strength. Furthermore, chaos appears already for quite short cavities, allowing for 

compact devices. We have shown that two of these devices can be synchronized when operating 

in the chaotic regime in a master-slave configuration. However, synchronization is degraded 

when there is a mismatch in the parameters of the master and slave system. Since the novelty of 

this scheme is the existence of two feedback phases, we have discussed the effect of a mismatch 

in these phases in detail. A mismatch in the air gap feedback phase turns out to have stronger 

effects in the master-slave cross-correlation than a mismatch in the material cavity feedback 

phase. However, for mismatches small enough, good quality synchronization is obtained. For 

the parameter values where good synchronization is achieved, it is possible to encode a message 

in the carrier using the chaos modulation technique. The message can be appropriately recov-

ered at the receiver even for high bit rates. The codification method we employed is just an ex-

ample of what can be done. While this codification technique is efficient and simple to 

implement, other codification methods could be used as well. 

We have also studied the dynamics of a device composed of a semiconductor laser subject 

to a TDCF. The main advantages of this scheme over that of single cavity include the existence 

of two feedback strengths, two feedback phases, and two delay times that can be controlled 

separately. The results presented in this review show the following features: under appropriate 

conditions, this setup is capable of generating a robust chaotic waveform; two of these devices 

can be synchronized when operating in the chaotic regime in a master-slave configuration if 

some parameters are properly matched; a short resynchronization time, which is two orders of 

magnitude shorter than that of COF case, can be obtained with this scheme; and OOPSK en-

cryption can be successfully applied at a rate of hundreds of Mbit/s. This means that such de-

vices are promising candidates for fast on/off phase shift keying encryption. 

We believe that our work provides a good basis for future study and, in particular, pro-

vides some pointers for more detailed investigations of multi-section integrated devices and 

their applications for chaos-based communication systems. 
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