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Abstract. The quantum dots laser under the influence of conventional and filtered 
feedback is analyzed in the framework of the extended Lang-Kobayashi rate equations. 
The feedbacks comes from two separate branches: conventional and filtered optical 
feedback. We introduce a filtered feedback to control the unstable behavior of laser 
induced by conventional optical feedback. The stationary states, so called external filtered 
modes, of quantum dot laser under the influence of double feedback are obtained 
analytically. The locations of these modes are plotted in the plane of different parameters. 
Finally, it is shown that under appropriate conditions the laser system generate different 
behavior as continuous wave, periodic and chaotic behavior. In the case of equal feedback 
strengths in both channels it is shown that for a small feedback strength the phase portrait 
is a stable focus. With increase of the both feedback strengths the phase portrait became a 
limit cycle, and finally goes to a strange attractor. 

 

Keywords: conventional and filtered optical feedback, externally cavity modes, quantum dots 
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1. Introduction 

During recent years the control of semiconductor laser showing dynamical instabilities 
has received considerable attention due to its fundamental importance and practical 
applications. It is well known that laser under influence of conventional optical feedback 
shows different behaviors e.g. periodic, quasi-periodic or chaotic oscillations. Such chaotic 
behavior is benefic in applications like chaos-based communications [1, 2]. On the other 
hand, such oscillations are unwanted in many applications. Thus, the control of laser 
emission become the subject of different investigations. Ott, Grebogi and Yorke [3] show 
that a chaotic attractor can be stabilized by a little amount time dependent perturbation 
and transformed into periodic motion. Later on improving of this method in different fields 
have been reported [4-6]. Theoretical and experimental method of feedback control was 
proposed in 1991 by Signer et all [7]. Pyragas suggested time-continuous self-controlling 
feedback method for stabilization of the unstable periodic orbits [8, 9]. A study of the 
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continuous-wave operation of a semiconductor laser subject to an external optical feedback 
from a Fabry-Perot resonator in a case where the emission is resonant to a reflection 
minimum of the resonator was reported in [10]. Such configuration was treated in the 
framework of Lang-Kobayashi equations by finding the nature of bifurcations and the 
stability of steady state solutions. It was shown that in contrast to conventional optical 
feedback from a single mirror, the locus of external cavity modes is not elliptic but 
represents a tilted eight with possible satellite bubbles. The results obtained in [10] are a 
prototype for all-optical realizations of delayed feedback control. Advantages of controlling 
the unstable dynamics of a quantum wells semiconductor laser subject to conventional 
optical feedback by means of a second filtered feedback branch is presented in [11]. There 
were obtained analytical solutions of the double cavity feedback and has shown 
numerically that the region of stabilization is much larger when using a second branch with 
filtered feedback than when using a conventional feedback one. 

It is well known that the quantum dots (QDs) become the main element for lasers. The 
advantages of QDs lasers were predicted some twenty years ago and include low threshold 
current, weak temperature dependence, increased material and differential gain, high 
modulation frequency, low jitter under pulsed operation, low chirp and low sensitivity to 
optical feedback [12 - 15]. Although QDs lasers are now generally better than quantum well 
lasers, the characteristics of QDs lasers still deviate from the ideal case due to a number of 
unforeseen phenomena, including the thermal population of excited dot and barrier states, 
the loss of carriers to non-radiative centers and the presence of inhomogeneous broadening 
due to non-uniformities. Even a small amount of feedback can destabilize lasers, inducing 
instabilities and resulting in very complicated dynamical behavior – so called chaos. In the 
case of communication, CD and DVD systems, the feedback is due to reflection from 
interconnection or from CD and can cause an increase in phase and intensity noise, mode-
hopping, coherence collapse and linewidth broadening. The present paper represents a first 
theoretical study of a configuration of double feedback conventional and filtered for lasers 
with active region quantum dots. The paper is structured as follows. We start in Section 2 
by describing the setup of QDs laser under the influence of double feedbacks. We introduce 
also in this Section an appropriate model to describe this setup. Section 3 presents a study 
of the stationary states a laser under the influence of T-type cavity feedback: one being 
conventional and second filtered. The suitable conditions for the different laser system 
behavior were obtained. Finally, conclusions are given in Section 4. 

2. Setup and model  
The proposed setup is depicted schematically in Figure 1. It consists of a quantum 

dots laser with external feedbacks from reflectors R1 and R2. One feedback branch, of 
reflectivity R1, is so called conventional optical feedback and the other governed by R2 is the 
filtered feedback.  

For simplicity, we assume single reflection in both branches. We assume a grating 
filter described by a response function r(), expressed by a Lorentzian function [16] 
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Figure 1. The schematic view of the setup.

 

The dynamics of quantum dots laser with double feedbacks is analyzed in the 
framework of the extended Lang-Kobayashi rate equations 
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where E(t) and F(t) are the complex field amplitudes, ρ(t) is the occupation probability in the 
quantum dot, and N(t) excess carrier density. The following parameter values are used for 
the calculated results. Henry factor α = 2, and τ1 = 0.3, τ2 = 0.2 the external cavity round trip 
times. g = 1200 is the differential gain, and J = 20 is pumping parameter. The constants  
B = 0.012 and C = 40 describe the transport of charge carriers through carrier-phonon 
interaction, γns = 1.0, and γnp = 500. 

3. Stationary states. Numerical results. 
The stationary states of the system of equations (2) – (5) are given by rotating wave 

solutions so called external cavity modes (ECMs) of the following form  
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Inserting Eq. (6) into Equations (2) – (5) we obtain the following equations for Es, Fs, ρs, Ns: 
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In what follows we consider the derivatives of the left side of Equations (7) – (10) equal to 
zero. Thus, we obtain  
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After some transformations, we obtain a transcendental equation for ωs 
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and the following equations for ρs, Ns and Es: 
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with  
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In what follows we take into account the complexity of amplitudes 1 2sE E iE  ; 

1 2sF F iF  . From Equations (7) - (10) we obtain  
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For different values of parameters, the Equations (15) – (20) have different number of 
roots s. Let us first consider the case of only conventional optical feedback. In this case the 
solutions are located on top of an ellipse in the plane (Ns,s). Figure 2 shows the location 
of ECMs for different values of feedback strength. As one can see the ellipses increases 
when the feedback strength increases. 

 

 

Figure 2. External cavity modes in the plane of (Ns – s) for different values of feedback 
strength in conventional feedback branch. The feedback in filtered brunch is absent. 

 

When the filtered feedback is added the locations of the external cavity modes and 
the general picture become more complicated. A narrow filter with  =1 GHz is considered 
in this paper. 

The detuning  is chosen to be equal to zero. Figure 3 shows the location of modes 
for different feedback strength in filtered feedback brunch. For γ2 = 0 the modes, as was 
mentioned above, are located on the ellipse (see Figure 3a). When γ2 is increased to 5 the 
ellipse is deformed as shown in Figure 3b. A further deformation of ellipse is observed for γ2 
= 10. A further increase of γ2 leads to apparition of double bubbles (see Figure 3d). Thus, 
with help of second brunch we can control the stationary states of external cavity modes. 
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Figure 3. The location of external cavity modes for a fixed value of feedback strength of 
conventional optical feedback (

1
 = 10) and different values of feedback strength in filtered 

brunch: a) 
2
 = 0, b) 

2
 = 5, c) 

2
 = 10, d) 

2
 = 15. 

 

In what follows, we investigate the evolution in time of the laser system by using the 
equations (21) – (26). Figure 4 shows the results of numerical integration by Runge-Kutta 
method of the system (21) – (26). We consider the case of equal feedback strengths in both 
channels.  

Left panels in Figure 4 show the pulse traces of external output power. In the center 
panels, we show the phase portraits in the plane of two parameters (optical power P – 
carrier density N). The right panels shows the power spectra. Figure 4a shows these 
dependences for 

1
 = 

2
 = 15. One can see the relaxation oscillation of few nanoseconds 

with the phase portrait of stable focus. When the feedback strengths are increased to 
1
 = 

2
 

= 20 the pulse-trace become periodic and the phase portrait is a limit cycle. A dominant 
mode is present in the right panel of Figure 4b. 

A further increase of both feedback strengths to 
1
 = 

2
 = 40 leads to the appearance of 

chaotic behavior in the pulse trace (see left panel of Figure 4c). 
The phase portrait (center panel) is strange attractor. 
The chaotic behavior is confirmed by wide power spectra shown in right panel of 

Figure 4c. 
Thus, the double cavity feedback imply the different behavior of system from 

continuous operation to chaos. 
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Figure 4. A typical optical power time trace (left), phase portrait (center) and the power 
spectrum (right) of a semiconductor laser is shown in Figure 1 for: a) 

1
 = 

2
 = 15, b) 

1
 = 

2
 = 20, 

c) 
1
 = 

2
 = 40. 

4. Conclusions 
We have treated in this paper a quantum dots laser under the influence of 

conventional and filtered feedback in the framework of properly adapted Lang-Kobayashi 
method. 

We obtain analytical solutions for stationary states, so called externally cavity modes. 
It is shown that in case of only conventional optical feedback these steady states are 
located on top of an ellipse in the (Ns − ωs) plane. In case of the double cavity feedback 
(conventional and filtered) the ellipse is strongly distorted and breaks into several bubbles. 
The results presented in this paper show that under appropriate conditions the laser system 
is capable to generate different behavior as continuous wave, periodic and robust chaotic 
behavior. We believe that our work provides a good basis for future study and, in particular, 
provides some pointers for more detailed investigations of quantum dots lasers dynamics 
under the influence of conventional and filtered feedback. 
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