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INTRODUCTION 
 

The undular reference frames represent interest 
at examination of waves behavior in absence of 
heterogeneous objects in medium. In this case as 
tools serves other waves in same medium. Thus, we 
term undular frame, the system, in which as time 
etalon serve the period of standing or semi-standing 
wave in a fixed point, and length etalon is equal to 
distance between two points with an identical phase. 
In paper [1] we have shown, that the transition from 
one such system in another is implemented in 
correspondence with Lorentz transformations. 

In the previous article [2] the particular 
solution of a problem was given for the force which 
act on the wave on stream border, when the wave 
goes along border. In present paper we shall give 
the general solution of this problem for a case, when 
the wave goes under an arbitrary corner in relation 
to stream border. Finally the obtained solution is 
extended on the case, when the velocity of medium 
varies smoothly depending on coordinate.  

2. THE PROBLEM DEFINITION 
 

Input data: 
- the study area - continuous medium, in which can 

exist streams or differences of velocity. We shall 
term this medium as the continuum; 

- the object of examination - the differences of 
velocity in continuum; 

- the tool used for examinations - the wave-tool 
representing domain with redundant pressure 
(density) in comparison with pressure in a 
unperturbed continuum. 

Problem: to determine, which parameters 
characterise the interactions of the wave-tool with 
streams, and how these parameters are interlinked 
among themselves. 

3. INTERACTION OF THE WAVE-
TOOL WITH DIFFERENCE OF 

VELOCITY 
 

In the article [2] we have shown, that 
the wave can detect a pressure drop. In the field 
of a pressure drop, on a wave act the force  

pSF T
T Δ±=

0ρ
ρ .            (1) 

Here S - is sectional area of wave-tool in the domain 
of pressure drop, Δp - pressure drop, ρT - redundant 
density caused by the wave - tool, ρ0 - density of 
medium. Unfortunately, in the quoted article the 
normalization factor ρ/ρ0 was missed. The sign in 
expression (1) is determined by the sign of 
redundant density. 

As was shown in article [1], the wave - tool 
"can not detect" the motion velocity concerning the 
medium, in which it exist. But we will show, that 
the wave-tool is capable "to detect" the drop of 
velocity in medium and we shall calculate force, 
which act to the wave-tool on the stream border. 

Let suppose that, the wave-tool, which carries 
surplus of a continuum, goes along the axis x and 
intersect the flux border (figure 1). We must choose 
three reference frames: 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The wave intersect the flux border, all 
parameters are measured in a laboratory frame. 

- the laboratory system, for definiteness we shall 
consider, that concerning it, the continuum is 
immobile; 

- reference frame bound with a flux; 
- reference frame of the wave-tool.  

In laboratory system are used the following 
notations: vF - flux velocity; vT - wave-tool velocity; 
ϕ - angle between flux border and direction of 
wave-tool motion; θ - angle between flux velocity 
vF and axis x in laboratory system. The angles ϕ and 
θ are equal in laboratory system among themselves, 
but in other systems they can be not equal among 
themselves. The same values measured in the flux 
system, we shall mark by one accent. If these values 
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are measured in system of the wave-tool, they will 
be marked by two accents. 

For excluding the influence of a static 
pressure drop, which was studied in the previous 
section, we consider, that in laboratory system, the 
pressure of a continuum pC is equal to flux pressure 
pF i.e. pC=pF=p0. Thus, if the wave-tool rest in a 
laboratory frame, the resulting force acting on it on 
flux border, is equal to zero.  

System, in which the viewed segment of 
length has maximum length, we shall term as own 
system. Let's consider, that in laboratory system the 
pressure is isotropic. 

The transitions between reference frames 
are accomplish with help of coefficients.  

( )22
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1

1

1

c
v−

=
−

=
β

γ ,       (2) 

If the transition is accomplish from own 
system, the length of a segment oriented along axis 
x is necessary to multiply onγ. At inverse transition 
the segment length is divided on γ. 

Now we can formulate a problem as follows: 
we must to determine value and direction of 
force acting on the wave-tool on flux border in 
laboratory system, as function from flux velocity 
vF and wave-tool velocity vT. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The layer of the wave-tool having 
thickness dz, for which we determine the force 

acting on flux border 

At first we shall determine the force which act 
on the layer, having the thickness dz, and clipped by 
planes, parallel to plane xy (figure 2.). As the 
problem is symmetric concerning the plane xy, it is 
enough to determine the force F, which act on the 
layer in this plane. 

For the solution of posed problem the 
following algorithm is applicable: 
1. we shall calculate force, which act on the wave-

tool from the "stationary" continuum in wave-tool 
system; 

2. we shall calculate force, which act on the wave-
tool from the flux in wave-tool system; 

3. we shall determine the resulting force in the 
wave-tool frame; 

4. we shall convert the resulting force in laboratory 
system. 

The force, which act on the wave-tool 
from the continuum, is equal to integral from 
pressure on the surface of the upper arc MM1 
multiplied on dz (figure 3). By virtue of symmetry, 
the tangential component is compensated. Therefore 
force acting on the wave-tool from the continuum in 
laboratory system is equal 
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ρ
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Here RdzdS = . The projections of this force on an 
axis x and y will be: 

ϕ
ρ
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ρ
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0
dSpFCy = . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. The changing of position of flux border, 
when transition from laboratory system in a wave-

tool frame of reference. 

At transition in wave-tool frame, the 
coordinate scale tests relativistic compression in the 
axis x direction, and in the direction of an axis y 
gauge remains constant. Thus the point N" is 
displaced in the position of N, and the angle 
between the axis x and flux border ϕ is transformed 
in ϕ". Coefficient of compression along an axis x is 
equal to 
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where 
c
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F =β .  

Hence, in system of the wave-tool the component 
forces acting from "stationary" continuum will be: 
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As was already marked, at transition from 
laboratory system in wave-tool frame, the point N " 
is displaced in the position N. That is, as it is visible 
from figure 3, the length of border segment, with 
which the wave-tool interact, varies. For brevity the 
length of border segment, with which the wave-tool 
interact, we shall name as effective length. Thus, 
the transition between frames is linked to the 
change of three values: continuum pressures, angle 
between border and axis x , and effective length of 
border. 

According to item 3 of our algorithm, we must 
summarise two forces acting on the wave-tool. 
Namely: force acting from the continuum and force, 
acting from the flux. In this case, in the wave-tool 
frame, the effective length of border, is common for 
both "fixed continuum " and flux, while the angles 
and pressure will differ. For this reason in 
expressions (4) and (5) we should distinct three 
marked components. Therefore we express formulas 
(4) and (5) in the terms of the wave-tool, that is, we 
shall express through values with two accents. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. To determination of separate 
transformation of effective border length and 

pressure 

The flux border is located in the first and third 
quadrant symmetrically relatively of frames origin 
O. Therefore it is enough to carry out the analysis 
for the first quadrant (figure 4). The transition from 
the laboratory frame into wave-tool frame can be 
described in two stages: the squeezing of border 
segment, with which interreacts the wave-tool and 
its rotation. 

If in laboratory system the effective length is 
equal to R = OM, then, in wave-tool frame, its 
projection to an axis x will be longer in γT times. At 
such transformation the point M transfers in the 
point M " and, hence, R is conversed in R". So, the 
effective value of radius in wave-tool frame: 

KRRR T =+= ϕγϕ 222 sincos" .     (6) 

Here we have designated ϕγϕ 222 sincos TK += . 
Simultaneously border turns, so, that the angle ϕ is 
transferred in ϕ". So 

ϕγϕ tg"tg T= .        (7) 

By using formula (7) in known relations:  
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Taking into account expressions (6), (9) and 
(10) it is possible to write down the formulas for 
transformations of projections R on an axis y and x 
accordingly: 

T
RR

γ
ϕϕ "sin"sin = ,   (11) 

"cos"cos ϕϕ RR = .   (12) 

Let's set (11) and (12) in (4) and (5), we shall 
receive the projections of force acting from the 
"stationary continuum" in the wave-tool frame: 
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At description of force components acting from 
flux, the expressions which feature transformations 
of pressure and angle will vary, that is expression in 
brackets. Effective radius R" will remain constant. 
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Thus, we can use the similar formulas at definition 
of force acting from the flux. 

For determination of force acting to the 
wave-tool from the flux in the wave-tool frame is 
necessary to re-count the flux pressure from 
laboratory system in the wave-tool frame. Both 
these systems are not own in relation to the flux. 
The problem is, that through coefficients γ (2) it is 
possible to realize a transition between two systems, 
one of which should be own. For this reason at first 
we should determine flux density in its own 
reference frame, and then calculate flux density in 
wave-tool frame. 

From the equilibrium condition on the border 
in the laboratory frame, follows, that: pC=pF=p0. 
From here pressure of the flux in its own system: 

F
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F
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Where   
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F

F
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γ

−
=           (15) 

and 
c

vF
F =β . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. To definition of force acting on the wave-

tool from the flux 

We are able to determine pressures (and 
consequently also forces), which act on the wave-
tool along the direction of its motion and in the 
perpendicular direction. But in this case the 
direction of flux motion in the wave-tool frame does 
not coincide with axes x and x". The flux goes under 
the angle θ" to an axis x" in the wave-tool frame. 
Therefore, for finding force, which act from the 
flux, we use an auxiliary frame x1y1. This system is 
linked to the wave-tool, and is oriented in such 
manner, that the axis x1 coincides with the direction 
of the flux motion relatively of wave-tool, i.e. with 

vF". The plane x1y1 coincides with the planes x"y" 
and xy. As we can see on figure 5, the axis x1 is 
turned relatively x" and x on the angle θ".  

Thus, from the "point of view" of the wave-
tool the "stationary continuum" goes along the axis 
x", and the flux goes along the axis x1. Coefficient 
of gauge reduction along the axis x1 when transit 
from frame of flux to wave-tool frame: 

2
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Here 
c

v "
" F
F =β  and vF" - velocity of the flux 

motion relatively wave-tool frame. Let's designate 
vL- velocity of the motion of laboratory system 
relatively the wave-tool. We will found the velocity 
of the flux motion relatively of wave-tool frame 
according to the relativistic law of the velocity 
addition and taking into account, that vL = -vT, we 
can note: 
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Having substituted (17) in (16), after simple 
transformations we shall receive: 
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Or in view of expressions (3) and (15): 

)cos1(" TFTFF θββγγγ −= .   (18) 

Thus, for transversal and longitudinal 
component pressure acting on the wave-tool from 
the flux, it is possible to note: 
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Then by analogy to expressions (13) and (14) and 
taking into account (6), the components of force 
acting from the flux on the considered layer of the 
wave-tool, will be: 
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As well as in expressions (13) and (14) in brackets 
we have the parameters, linked with transformations 
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of pressure in the flux and slope angle of border in 
relation to the axis y1 of auxiliary frame. In this case 
is more convenient to counting the angle ξ from the 
axis y1. 

In view of expression (18), we shall receive: 

( ) ξθββγ
ρ
ρ

sincos1 TFT0
0

1 −= dSpKF T
y ,   (19) 

( )
dSpKF T

x
θββγγ

ξ
ρ
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TFT
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0
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where dzRdS 2=  - area of the border, cut by the 
viewed layer of the wave-tool (figure 5). 

Let's express functions of the angle ξ through 
functions θ" and ϕ". As it is visible from figure 5,  
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From here:    ( )( )"tg1"tg1
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And            ( )( )"tg1"tg1
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For determination of the angle θ" we apply the 
formula for angle transformation. Let's vF is flux 
velocity in laboratory system and vL is velocity of 
laboratory system relatively wave-tool. At the 
relativistic addition, the angle between flux velocity 
in wave-tool frame vF" and axis x will be: 
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or, taking into account (3): 
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Let's substitute in (21) expressions: (7) and 
(22) also we shall take into account, that: ϕθ = . 
We receive: 
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We have designated here 
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In view of expression (3) and after the series of 
transformations we shall have: 
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By substituting (23) and (24) in the formulas (19) 
and (20), we shall receive: 
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Figure 6. The projections of force acting on the 
wave-tool from the flux. 

The formulas (25) and (26) describe 
projections of force FF on an axis y1 and x1 of 
auxiliary frame. Let's remind, FF is the force, which 
act on the wave-tool from the flux. And the axis x1 
coincides with the direction of the flux motion 
relatively of wave-tool. Now we shall project the 
components described by the formulas (25) and (26) 
on an axis x" and y", for summarizing its with 
components (13) and (14) of force, acting on the 
wave-tool from the continuum. For each of 
component (25) and (26) we obtain two projections.  
As it is visible from figure 6, 
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        "cos11 θxxx FF = ;      "sin11 θxyx FF = ; 

        "sin11 θyxy FF −= ;    "cos11 θyyy FF = .      (27) 

If we insert in relations (8) the expressions 
(22) we shall receive: 
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The projections on axis x” and y" of force 
acting from the flux on the wave-tool in its own 
reference frame: 

xyxxx FFF 11F" += ,.    (30) 

yyyxy FFF 11F" += .    (31) 

By inserting the expressions (25), (26), (28), (29) in 
the formulas (27), and the results obtained in (30) 
and (31) we shall receive: 
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0
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We copy expressions (13) and (14) for the 
component of forces acting from the continuum, 
taking into account, that ϕ=θ: 

θ
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0
dSpFCx = ,   (34) 
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0
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Aggregate forces acting on the layer with 
thickness dS along the axis x and y in wave-tool 
frame: 

""" FxCxx FFF +=  

""" FyCyy FFF += . 

By inserting in these formulas the expressions (32), 
(33) and (34), (35), we shall receive: 

0"=xF     and  TFT0
0

" ββγ
ρ
ρ dSpF T

y −= . 

Thus, the force, which act on the wave-tool 
along the axis x, is equal to zero. Hence, on the 
wave-tool intersecting flux border, always act 
only the force, perpendicular to direction of the 
wave-tool motion: 

TFT0
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"" ββγ
ρ
ρ dSpFF T

y −==         (36) 

Now we pass from wave-tool frame to 
laboratory system. Let's designate force, which act 
on the layer dS of the wave-tool on flux border in 
laboratory system as dF. This force will be equal: 
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To calculate force, which act on all wave-tool 
on border is necessary to substitute dS by S (figure 
8). Where S the sectional area of wave-tool, which 
coincides with border.  

TF0
0
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ρ
ρ SpF T−= . 

If the difference of velocity smoothly varying 
and is described by derivative from velocity on 
spatial coordinate l, then the force, which act in the 
domain of velocity difference will be: 
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As it follows from the deduction accomplish above, 
the vector of force F is located in same plane with 
the vector of flux velocity vF and vector of wave-
tool velocity vT and is perpendicular to velocity of 
wave-tool.  

If to designate: 

( ) VxSxxSq TTT

00
21

0 ρ
ρ

ρ
ρ

ρ
ρ

=Δ=−= , 

and   
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∂
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the formula (37) becomes identical to the formula, 
for Lorentz force which act on the electron, moving 
in the magnetic field. 
Thus, it is possible to make a conclusion that, in the 
field of velocity variation of medium on the wave 
act the force similar to the force, acting on electrical 
charge in the magnetic field. The sign of force is 
determined by surplus or deficit of continuum 
carried by wave. Is remarkable, that all deductions 
are precise, that in physics happens seldom.  
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