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Abstract: In the work are compares four different algorithms for the solution of control and state 

constrained optimal control problems. For dynamic processes is a given differential equations with 

the initial conditions. The results indicate that algorithms in general should be preferred in the 

order: simultaneous optimization and collocation, conjugate gradient, Goh, Teo, and Sakawa, 

Shindo. 
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INTRODUCTION 

 
Numerical algorithms computing open loop nominal controls have been proposed by numbers 

contributors. The key concepts of thesis algorithms are numerical integration of the state differential 

equations and a gradient algorithm in function space to up date the control function. The work 

compares four different algorithms for the solution of control and state constrained optimal control 

problems. The model predicative control schemes based on nonlinear processes mode have recently 

been proposed to cope with severe process nonlinearities [1, 2]. 

A different approach to the solution of the open loop optimal control problem is the control 

variable parameterization (CVP) strategy. The control is replaced by approximating functions, and 

the original optimal control problem is turned into the problem of deciding the optimal parameters 

are the approximating functions. This optimizations problem can be solved by a standard 

mathematical programming code, and state constraints are treated by Euler-Lagrange equations 

which provide the gradient information of the constraints with respect to the control parameters. A 

number of different control approximations have been suggested [3, 4]. By that approach, a good 

control approximation can usually be obtained with few parameters. The med to transform the 

control variables to ensure that the control bounds are met is a clear disadvantage. 
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IMPLEMENTED ALGORITHMS 

 
The applied conjugate gradient algorithm computes the search direction by: 
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where superscript i denotes iteration number d(t) is the search direction and gu(t) is the 

gradient vector of the Hamiltonian with respect to the control vector at time t. 

The inner product calculations in (1) for vector time functions a(t) and b(t) an the time interval 

[t1, t2] are defined by  
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The classical 4th order Runge -Kutta method is applied to solve the differential state and cost 

equations. 

Control variable up date iteration each is performed by: 
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The controls are clipped at the bounds before calculating the value of the performance index 

in the line search phase, and the portions of the control gradients corresponding to intervals of 

saturated controls are omitted from the inner product calculations.  

Controls are freed from the bounds by application of steepest descent when the gradient sign 

make this convenient. 

Quadratic interpolation based on values of the performance index is applied in the line search. 

State variable inequality constraints and fixed final states are handled by the penalty function 

strategy proposed by Kelley (1962) 

   2,,max Qttxh


 , 

where    0, ttxh  is the state variable inequality constraint, is added to the integrand of the 

performance index. 

Given an initially small value of x, the problems are solved to meet the requested accuracy. 

If the state trajectory of the solution is inside the infeasible region, x is increased by a - 

constant factor and the solution procedure continues from the current trajectories. This process is 

repeated if necessary. 

One version applies constant control parameters in each finite element, and a limited number 

collocation points for the state approximating Lagrange polynomials within each element. The 
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initial time and final time for each element are included as collocation points, but due to the given 

initial states and the state continuity at the knots between the elements, the residual equations for 

the first collocation point in each element are admitted. The constant controls are allowed to switch 

independently at the knots. 

The residual equation in this implementation au given by: 
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and original performance index 
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where x0
i – initial state, xj

s – state at point j in element s, x0
s= xk+1

s-1 for s=2, N, us – control 

parameter vector in element s, S,N – number of elements, k – order of the Lagrange polynomial, 

f(xj
s,us) – the differential equation, xij

s – differentiation weight on state parameter vector nr. J in the 

residual equation for collocation point nr. i in element s, Ii
s – integration weight for collocation 

point I in element s, wij
s – differentiation weight on state parameter vector nr. j in the residual 

equation for collocation point nr. i, in element s. 

The optimal control problems have been challenge a conjugate gradient function space 

algorithm, the algorithms due to Sakawa, Shindo and to Goh, Teo, and an implementation of a 

simultaneous collocation and optimization algorithm. 

Piecewise constant control parameterization is applied by Goh and Teo. 

The results indicate that the algorithms in general should be preferred in the order: 

simultaneous optimization and collocation, conjugate gradient, Goh and Teo and Sakawa and 

Shindo. 

Sakawa and Shindo`s algorithm which was originally proposed to solve the container crane 

example problem, actually facile to solve that problem in a sates factory  way. 

The performance on the bang-bang problem was bad as well although the algorithm was 

excellent on the state variable inequality constrained problem, on indication was found that this 

algorithm should in general be preferred to the other three. 

 
LINEAR SCHEDULING PROBLEMS 

 
Scheduling problems arise from situations that requite the assignment of resources over a 

period to perform a set of activities. When the activities are deterministic these problems may be 

formulated as combinatorial optimization problems in the classical science. In this part it are 

dealing with a dynamic scheduling problems where the processing time  tpi  is defined by 

differential equation 
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with the following initial condition   ii bTtp  . 

Hence the processing time   btAtp ii  , the performance index ic  is defined as  

  TCtpCC iii   01 , . 
Theorem1. Optical ordering for 
    iiiiiii CtbAbtAtP maxmin;0;0;0;   
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Proof. 
1. Let   nnnnnn bbCaaC   121 ; for sequence 1, 2, …, n-1, n and 

  121   nnnnnn bbCaaC ; for sequence1, 2, …, n, n-1 nn CC  ; 

111   nnnnnn bbabba ; nnnn bAbA 11   ; 11/  nnnn bAbA ; 

2. Let   njjijijn ppbbCaaC   ...12 , for sequence nij ,...,,...,,...,2,1 ,  

and   njijjjin ppbbCaaC   ...12 , for sequence 1, … ,  j, …, m nn CC    

ijijij bbabba  ; jiij bAbA  ; iiij bAbA / . 

This means that in order to active the optimal sequence we have to order process for non-

increasing values of ll bA /  for  hl ,...,2,1 . 

Problem    iii CAtp / , 

 iC  - denote a performance index for ordering of processes in the 

form ),1,...,,...,,...2,1( nnjl  . 

 iC   - denote a performance index for ordering of processes in 

the ),1,...,,...,,...2,1( nnij  . 
Theorem2. If the relation nni AAAA  12 ...  

Are fulfilled, then the ordering of processes by means of the sequence  ),1,...,2,1( nn   is optimal. 

Proof. The existence of a smaller value of the quality index  iC must have caused the existence of 

such a pair for which the following relation should be true  

 ll AA 1  for  1,...,2,1  nl  

Despite the assumption AAAA ni  12 ... . 

Problem    iiti CbAtp / ; 0,0  tbA ii . 

The substance of the optimization method for nonlinear dynamic processes is to divide the set 

of index permutation into the variations of these indices. The base of the subsets which are method 

is an observation that finding k-element variation in a set comprising, n-elements, requires less than 

nk computation as derived from the formula   knknn :  
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CONCLUSIONS 

 
Dynamic parameters of the control systems are assumed to be unknown but constant. The 

three optimal problems considered challenged the four algorithms in different ways.  

The conjugate gradient algorithm in function space performed reasonably well on all 

problems, although good tuning parameters in the penalty function approaches apparently had to be 

found by trial and error. Small tolerances satisfied before the first increase in the penalty parameters 

seemed to be choices on both penalty function problems. The optimal controller was shown to be 

globally stable in the sense that the control objectives achieved asymptotically. The optimization 

parameters of process of synchronization are carried out on the basis of mathematical information 

model by the structured Sakawa and Shindo`s algorithm. In the last algorithm the state variables are 

approximated by Lagrange polynomials while two different control parameterization are applied. 

Piecewise constant control    parameterization is applied by Goh and Teo. 
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