
Journal of Engineering Science Vol. 2, no. 1 (2018), pp. 30 - 37 
Fascicle  Industrial Engineering ISSN 2587-3474 
Topic Materials Science and New Technologies eISSN 2587-3482 

Journal of Engineering Science  June, 2018, Vol. 2 

 
DETERMINATION OF THERMOREOLOGICAL CHARACTERISTICS AT 
MICROSCOPIC SCALE FROM EXPERIENCES ON THIN WALL TUBES 

 
Vasile Marina, Viorica Marina1* 

1Technical University of Moldova, 168, Stefan cel Mare str., Chisinau, Moldova 
*Corresponding author: Viorica Marina, marina_viorica@yahoo.com 

 

Received: February, 20, 2018 
Accepted: May, 05, 2018 

 

Abstract. The relationships between the module of stress and strain tensor deviator, in the 
case of thermorheological processes, are modeled by using the structural model. It is shown 
that sub-element properties can be determined from some experiences on thin walls tubes 
loaded with axial forces and interior pressure. Because the constants and material functions 
for this material are unknown the loaded conditions with constant state parameters are 
required. If the stretching process is produced with a constant speed of axial strain for each 
material there is one constant report among axial and circumstantial stresses which ensures 
in isothermal processes state constant parameters. 
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 Introduction 
It is well-known that the disordered environment characteristic of most of the 

materials used in the technique is considered statistically homogeneous at macroscopic 
level. The minimal volume, which satisfies this requirement we will note with 0V , but the 

surface which delimits it through 0S . The volume element 0V  is considered compound 
from an infinite number of structural sub-elements, which in their turn, contain the 
sufficient number of atoms, that the conception of the continuous environment also 
remains valid at sub-element level. The subelements are cinematically linked to each other 
and have simple, but different, thermorheological properties. Due to subelements that are 
endowed with simple thermorheological properties, they are determined on the basis of 
restricted number of experiences. Complex properties which building materials possess at 
macroscopical level are due to extremely complex interactions among the subelements. 
Thus the advantage of the structural model in comparison with theories and 
phenomenological models, proposed by different authors, consists in possibility of 
description under unit form of broad spectrum of thermomechanical phenomena, on the 
basis of small amount of experiences. 

 

1. The methodology of transition from micro-stresses and strains to macro-
stresses and strains 
The thermomechanical magnitudes, which describe the behavior of materials 

depending on their structure and historical exterior action, are defined at two levels: 
macroscopic (conglomerate/system of subelements) and microscopic (subelement). Thus, 
we will use the following parameters at macroscopical level: ijt  - stress tensor; ijd  - strain 
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tensor; 1

3ij ij nn ijt t    - stress tensor deviator; 1

3ij ij nn ijd d    - strain tensor deviator;  

  - module of stress tensor deviator defined by the relationship ij ij   ,   - module of 

strain  tensor deviator, ij ij   . At macroscopic level all magnitudes are noted with bars 

over them: , ,ij ij ijt d  . 

If on the conglomerate’s surface of subelements are homogeneous, then on the basis 
of equilibrium and Cauchy’s geometrical equations in [1] R. Hill established the following 
fundamental relationships: 
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From „Eq.(1)” it results that macroscopic stresses are equal with average of 
microscopic stress and therefore by using „Eq.(2)” we obtain that macroscopic strains are 
equal with average of microscopic strains. 

„Eq.(1) - (3)” are necessary, but not sufficient for construction of governing equations 
at conglomerate level on the basis of physic equations at subelement level. To achieve a 
complete system of equations new relationships are needed. From R.Hill relationships we 
can conclude, that volume means of stresses, strains and their scalar product (see „Eq.(1)”) 
depends univocally on data surface S . But not all microscopic variables have this specific 
property. In [2, 3] it has been proven, that for spherical tensors and deviators (see „Eq.(1)”) 
the following relations may fail to hold: 

 

 0 ijijijij  , (4) 

 00000   . (5) 
 

In [3] the relations of type „Eq.(1), (6)” were named discordance. The discordance 
among macroscopic suitable values is carrier of information’s about one string of structural 
subelements of composite material. In [2] it was postulated principle: in all real interactions 
the discordances of microscopic values with their suitable macroscopic analogs the extreme 
values are obtained: 

 

 .extrijijijij   , (6) 
 

 .extr 0000   (7) 
 

The second principle was obtained starting from the mechanisms of crystals 
deformation in polycrystalline conglomerate. The experimental researches demonstrate 
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that there exists auto coordination of deformation processes among material particles from 
conglomerate. 

In [3, 4] it was formulated the principle of medium ties, according to which, the 
interactions among sub-elements are formed only under medium ties influence. Starting 
with this principle and presentation of mentioned three R. Hill relationships under one 
single expression: 
 0 ijij dt , (8) 

 
 
 

where ijijij ttt  , ijijij ddd  , 

was postulated the principle 
 

 .dt ijij 0  (9) 
 

According to „Eq.(9)”: the scalar product (interior) among fluctuations of stress and strain 
tensors are canceled in each subelement of conglomerate. 

If in „Eq.(9)” we decompose the stress and strain tensors in deviators and spherical 
tensors, we establish an additional fundamental relationship [4]: 

 
 

      00003   ijijijij . (10) 
 

From „Eq.(10)” it results, that in polycrystalline conglomerate, at sub-element level, 
any variation of stress/strain tensors deviators provokes spherical tensors variations. Due to 
these properties, we succeed to describe one string of thermomechanical properties, known 
from the experience, but can’t be explained in another theories or models. 
 In order to obtain one complete system of equations in [3] it was postulated an 
additional principle: for any thermomechanical processes the fluctuations of stress deviators are 
univocal functions of fluctuations of strain deviators. In linear approximation we have: 

 

  ijijijnmijij B   , (11) 
 

in which fourth order tensor ijnmB  depends on structural factors at microscopical level and 

reflects the cinematic interaction among sub-elements in conglomerate. 
On the basis of complete system of equations „Eq.(1) – (3), (6) or (7)”, „Eq.(10) and 

(11)” there can be established the governing equations at macroscopical level, in the case 
when physical relationships at microscopical level are known. 

 

2. The thermorheological properties of subelements 
Hereinafter we will admit that the subelements are isotropic. In this case the 

equation of composition „Eq.(11)” is simplified and gets the form: 
 

  ijijijij Gb   2 , (12) 
 

where through G is noted shearing module at macroscopic level, but through b  - intern 
parameter, which reflects the inhomogeneities of stress and strain states in the inner of 
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conglomerate. If strain deviators in subelements and at macroscopic level are discomposed 
in deviators of strain reversible tensors - ije  and irreversible - ijp , namely: 

 

 ijijij pe  ,                 ijijij pe  , (13) 
 

than „Eq.(12)” can be written under more convenient shape 
 

  ijijijij ppmee  ,                              
1


b

b
m . (14) 

 

In „Eq.(14)” only dimensionless values figurate and thus describing nonlinear 
processes,   - theorem is verified in automatic mode. On the basis of these values there can 
be obtained the direct relationship among reversible and irreversible strains. 

Physical relationships for system with infinite number of sub-elements can be 
described by a single expression (proportional processes): 
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where through   is noted the elasticity limit of considered sub-element,   – the 
parameter of identification of subelements  10  ,   - the thermal strain, a –  the 
work-hardening coefficient,   - the parameter, which is equal to average value of speed of 
irreversible strain in subsystem of  strained subelements after the elasticity limit: 
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In „Eq.(16)”, through *  it was noted the actual weight of subelements loaded after 

the elasticity limit (subelements for which * 0  are loaded after the elasticity limit, 

but subelements with values 1 * , continue to be required in the reversible field). 
In the case of some proportional solicitations, „Eq.(14)” and „Eq.(15)” can be written 

as follow: 
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From „Eq.(17)” and „Eq.(18)” we obtain the relationships for sub-element 
characteristics: 

 

     ,,mpe,,  , (19) 
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Taking into account „Eq.(20)” in „Eq.(16)” we find the relation for state parameter  : 
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3. Solicitation conditions with constant state parameters: .const.,const     
Since we operate with tensorial values in experience we will pass in „Eq.(21)”, from 

speed of stress and strain tensors deviators modules to respective tensorial components. In 
the examined case we have 
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If in „Eq.(21), (22)” we use the tensorial values, than we obtain: 
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where K is compression module. 
 Let's examine experiences on tubes with thin walls, solicited for stretching and 
internal pressure. Axial stresses and strains we denote respectively by - 1111 d,t , and 

circumferential stresses and strains denote by - 3333 d,t . In this case   parameters are 
determined from one of three formulas: 
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where 
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Form the required conditions we obtain the following values for ijr : 
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Analyzing relationships „Eq.(24) - (26)” we are convinced, that the signs and values of 
the expressions included in square brackets [ ] in the first two formulas, depend on the 
value of the parameter 3c . This is the situation we can use during the solicitation with 

.const  

Under laboratory conditions, experiments are easier to accomplish when .constd 11
  

The condition can be accomplished if in „Eq.(24)” we will admit 
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Thus, under the conditions of the relationship „Eq.(32)”, external stress indicator for 

.const  is strain with .constd 11
  Solving „Eq.(32)” to 3c , we find the position of the 

trajectory in the space 3311 t,t , which will correspond to intern parameter b  given: 
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Knowing the variation limits of the parameter  b0 , from „Eq.(34)” we set the 
size limits of the magnitudes of 3c . 

If b=0 (the homogeneous stress state), than from „Eq.(34)” result that 23 c , but for b  

(the homogeneous strain state), 13 c . Therefore magnitude 3c , based on which the 
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report among stress circumferential and axial values of tensors is established, varies in the 
following range: 

 

 21 3  c . (35) 
 

In this interval there can be realized solicitations under thin walls pipes if .const
for any possible scheme of cinematic interactions among subelements. 

Expressing in „Eq.(34)” b through m, but the report 
K

G2
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coefficient, we will find: 
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 The laws of variations of report among stresses 3
11

33 c
t

t
 , for different cinematic 

interactions schemes in subelements system, in function of Poisson coefficient values 
500 , , are presented in “Figure 1”. 

           

 

Figure 1. The laws of variations of report among stresses for different cinematic interactions 
schemes in function of Poisson coefficient values 

From “Figure 1” we observe that c3 curves for all possible values of   coefficient are 
located inside of ABC triangle. 

 

Results and discussion 
 Once the loading conditions with constant state parameters are established, we 
mention the material function: 
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which can be presented as follows: 
 

     e,,ef,,ep   . (38) 
 

 By introducing „Eq.(38)” in „Eq.(19)” and „Eq.(20)”, we find the relationships of 
subelements characteristics in the following parametric form: 
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       ,,emfme,,  1 . (40) 
 

Conclusions 
The rheological state parameter   in subelements of tube with thin walls, subject to 

action of some stretching force and interior pressure, doesn’t change during the experience, 

if the condition .constd 11
  is satisfied in the action period and ratio 3

11

33 c
t

t
  is in 

concordance with „Eq.(36)”. From the set of interaction schemes in the subelements, which 
concomitant reflects the no homogeneities of stress and strain state we obtain a special 

case for   1
3

2
m . 

The experience with .const  for this value of m, according to the „Eq.(36)”, 

corresponds to an axial load  0 0 333  t,c , with strain axial constant speed. 
We also mention that from the „Eq.(21)” results, that for any type of loading, in the 

moment of reaching the threshold of material passing from reversible to irreversible 
domain the state parameter   is proportional with speed of strain tensor deviator module. 
So, through this effect in any loading conditions at macroscopic level the continuum 
passing from reversible to irreversible material state is assured. 
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