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INTRODUCTION 
 

Any smooth mathematical function from 

time can be presented as the sum of harmonic 

functions from time. Similarly function from spatial 
coordinates can be presented as the sum of 

harmonic functions from spatial coordinates. The 

first representation constitutes a basis of the radio 
signals analysis, and on second the holography is 

based. It is logical to assume, that the function from 

time and spatial coordinates can be presented as the 

sum of harmonic functions from time and spatial 
coordinates, it means as sum of waves. Thus, it is 

possible to make a deduction, that the waves have 

sufficient completeness for the analysis and 
synthesis of as much as composite objects evolving 

in space and time. In article [1], we have proposed 

to accept as waves carrier the ideal continuous 
medium. Then, in correspondence with offered 

model, both objects of observation, and the tools 

will represent waves in this medium. In the same 

article the theorem was proved: if the tools and the 
objects, studied with their help, represent waves in 

same medium, in such "world" the maximal 

velocity of the wave propagation will not depend 
from velocity of reference frame. That is in such 

model the principles of a special theory of relativity 

are completely observed. Or else, we have shown 
that the presence of the carrier medium of waves 

does not contradict the relativity theory. 

In articles [2, 3] we explored, how the 

waves interact among themselves. Was shown that 
the stable standing waves can interact as a particle. 

And the Compton effect takes place in interaction 

between standing wave and progressive wave, in 
other words have a place the quantification of a 

travelling wave. 

In this article a problem we put to explore, 

how the wave-tool will interact with fluctuations in 
medium. In other words, we want to elucidate, 

whether it is possible to discover the pressure drops 

and drops of velocities in medium using the waves 
as tools, and how it will become apparent. 

 

1. INTERACTION OF THE WAVE-

TOOL WITH A PRESSURE DROP 
 

Let's assume that the instantaneous profile 

of pressure of the wave-tool, along the axis x, 

represents or surplus (fig. 1a) or deficit (fig. 1b) of 

pressures PT, in comparison with pressure in a 

unperturbed continuum P0. For brevity we name the 
wave figured on (a fig. 1a) as positive wave-tool, 

and wave figured on (a fig. 1b) - as negative wave-

tool. 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

To simplify the analysis, at first we shall 
assume, that the allocation of redundant pressure in 

a wave looks like a parallelepiped figured in figure 

as a rectangle. The result obtained thus can be 
extended simply for the wave-tool of any shape by 

summing (integration) of such elementary volumes. 

Let's determine the force, which act on such 

the wave-tool during the time, while the wave-tool 
not changes its shape. That is, in case of the positive 

wave-tool we are interested by instantaneous force, 

which act on continuum surplus, and in case of the 
negative wave-tool by force, which act on a 

continuum deficit. This situation resembles to what 

takes place with electrons and vacancy in 
semiconductors. 

 

 

 

 

 

 

 
We mark pressure and force, which act on 

surplus of a continuum as P+ and F+, and the 

pressure and force, which act on a deficit of a 

continuum as P- and F-. 
Let's assume that in a continuum there is a 

pressure drop (fig. 2a). In figure (fig. 2b) it is 

Figure 1. The profile of waves-tools 
pressure. 
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Figure 2. The representations of a pressure        
                 drop in a continuum. 
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figured as points density difference. On border the 

pressure drop, which act on surplus of a continuum, 

will be:  

21 PPP   .   (1) 

At the same time the pressure acting on a 

continuum deficit will be: 

 21 PPP   .   (2) 

That is, it is possible to tell, that the surplus of a 

continuum aspires to pass the border from left to 
right, and with the same success it is possible to tell, 

that the deficit of a continuum aspires to pass border 

from the right to the left. Thus, on border, the 
pressure, which acts on the surplus and on the 

deficit of a continuum, have equal modulo, but 

direction opposite. 
Now let's consider the behaviour of wave-

tool in the domain of a pressure drop. The fig. 3a 

and fig. 3b represents the positive and negative 

wave-tool accordingly in domain of pressure drop. 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
In this case, the force acting on the left wall of the 

positive wave-tool (a Fig. 2 a), will be: 

  TLL PPPSSPF  01 ,         (3) 

And the force acting on the right wall of the positive 

wave-tool: 

  20 PPPSSPF TRR  .          (4) 

The resultant force acting on the positive wave-tool: 

  
    2120

01

PPSPPPS

PPPSFFF

T

TRLT




. (5) 

The force acting on the left wall of a negative wave-
tool, on continuum surplus (Fig. 2 b): 

  TLL PPPSSPF 


01 ,   (6) 

And the force acting at the left on "a deficit of a 

continuum" created by the negative wave-tool will 

be guided to the opposite party: 

  TLL PPPSSPF 


01 ,     (7) 

Similarly, the force acting on the right on " a deficit 

of a continuum " created by the negative wave-tool: 

  20 PPPSSPF TRR 


.      (8) 

So, the resultant force acting on a negative wave-

tool: 

  
    2120

01

PPSPPPS

PPPSFFF

T

TRLT






.(9) 

Thus, in the domain of the pressure drop on 

negative and positive waves act forces, having 

identical modulo, but opposite direction. 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
Now we shall consider the case, when the 

wave-tool is located in the domain of a smoothly 

varying pressure drop (Fig. 4a). For simplicity we 
shall be restricted to a situation, when density in 

area interesting for us, varies under the linear law. 

The deductions are simple for extending on 

arbitrary allocation of density by piecewise linear 
approximation and passage to the limit, when the 

sites become infinitesimal, and their number will 

increase ad infinitum. In other words, we can pass 
from the sum to integral. 

So, we suppose that density in area, where 

there is a wave-tool, varies under the linear law 

(Fig. 4a). 
As well as in the previous case, force acting 

on the left wall of a positive wave-tool: 

  TLL PPPSSPF 


01 ,  (9) 

And the force acting on right wall of wave-tool: 

  20 PPPSSPF TRR 


.     (10) 

The resultant force acting on the positive wave-tool: 

  
    2120

01

PPSPPPS

PPPSFFF

T

TRLT






. (11) 

The forces acting from the left and from the right on 

the each intermediate plane between x1 and x2 will 

be compensated reciprocally. 
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Figure 3. Positive (a) and negative (b) waves-

tools in the domain of a pressure drop 

Figure 4. The wave-tool in the domain of 
a smoothly varying pressure drop. 
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If to compare expressions (5) and (11) with 

(9), we can see, that the force acting on the negative 

wave-tool in similar conditions will be: 

  
    2120

01

PPSPPPS

PPPSFFF

T

TRLT






 (12) 

Let's designate:  
x

P

xx

PP
E











21

21 .            (13) 

  VxSxxSq 
21 .  (14) 

E is a parameter of a pressure drop of a continuum, 
i.e. the parameter of a field, while q - is own 

parameter of wave-tool. q+ characterise the positive 

wave-tool, and q- negative. 
Taking into account (12) and (13) the 

expression (11) will be copied: 

qEFT     (14) 

If to pass to the limit, 

x

P

x

P
E

x 










lim

0

   (15) 

Generally at arbitrary orientation of axes in relation 

to pressure drop 

PgradE       (16) 

And           EF qT               (17) 

If to compare the formulas (14), (15) and (16) to the 

similar formulas of an electrodynamics, it is visible, 
that q - corresponds to the charge, E - to the electric 

field, and P - to the scalar potential. 

Transformations of E and q at change of 
the reference frame. Further we need to view 

values E and q from various reference frames, 

therefore we shall spot, how they will be conversed 
at change of a reference frame. The inhomogeneity 

can be viewed as a part of a wave. In article [1] we 

have shown, that the waves are conversing 

according to Lorentz transformation laws. But if the 
wave is bodily conversed according to Lorentz 

transformation laws, it is naturally to expect, as its 

parts will be converted also according to Lorentz 
transformation laws. The problem represents 

interest, how the value q and E will vary at 

transition from own reference frame to other 

reference frame. We will take into account, that in 
our model the unique tools, which the observer 

possesses, are the waves in the same continuum. 

The transformation of q. The observer can 
judge about transformation of q, measuring the 

change of force acting on q in the area of a pressure 

drop at transition of the observer from one system 
in another. As in this case the relativistic reductions 

of wave-tool volume and drop pressure area are 

identical, the force acting on q, will be invariant 

concerning a transformation of coordinates. 
The transformation of E. In this case the 

observer uses q as the tool for measuring E. Passing 

from system in system he keep with himself the 

tool, therefore q does not support the relativistic 

contraction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Let's considers a situation given in figure 3. 

Following the idea expressed in article [1] we use 
the coordinate net, which consists from waves and 

represents standing waves having reciprocally 

perpendicular wave vectors. In this case as 

coordinates will serve the wave vectors, as standard 
of length will be the wave length, and as times 

standards - the period. 5 a. Let's consider, that 

everyone brick contains the same quantity of a 
continuum. 

If the observer will transfer in the reference 

frame moving concerning laboratory system, from 

his point of view will take place the contraction of 
scale i.e. contraction of net of laboratory frame (fig. 

5 b). However area S, perpendicular to axis x, on 

which the interaction of the wave-tool with a 
continuum takes place remains constant. Therefore 

the component Ex remains constant at transition 

from a laboratory reference frame to system of the 

moving observer. That is         xx EE ' . 

Now we shall assume, that the pressure 

drop along an axis y (fig. 6 a) takes place. If 

observer pass from laboratory system to moving 
system, there will be contraction of laboratory 

system scale along the axis x in  times (fig. 6 b). 

Therefore, the wave-tool will adjoin already to 

greater number of bricks. It is equivalent to 

magnification in  times of effective area S of the 

wave-tool. Thus, at augmentation of velocity of the 
observer, the transverse component Ey will increase 

Figure 5 a. The component Ex of a field from the 

point of view of a laboratory reference frame. 

x' 

y' Ex  

Figure 5 b. The component Ex' of a field from 

the point of view of system moving along the axis 
x. 
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in  times (fig. 6 b). Hence, and the transverse force 

Fy, which act on a wave-tool, also will increase in  

times more.   yy EE '  

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

2. INTERACTION OF THE WAVE-TOOL 

WITH A FLUX 
 

As well as in the previous paragraph we 
shall consider, that the wave-tool represents either 

surplus, or deficit of a continuum, that is density, in 

comparison with an equilibrium state. Let's consider 
now, how the wave-tool with a flux will interact.  

As was shown in the quoted article [1], the 

wave-tool "can not detect" the absolute motion 

relatively to medium, in which it exist, as all inertial 
systems for it are equivalent. For wave all the same 

there it is located in a flux or in "fixed" medium. 

Therefore it is sense to view reaction of a wave only 
on difference or drop of velocity of medium. In 

other words, it is possible to expect, that the wave is 

capable to detect the border of flux, or, or else, 
difference of velocity. 

At first we shall consider, that border 

between a flux and "fixed" continuum is sharp. Let's 

mark considered area by a undular net, as shown in 
figure 7a. We shall suppose, that in laboratory 

system the flux pressure is equal to pressure in 

continuum, that is pF = p0 or pF = pF- p0 = 0. From 

the point of view of the wave-tool, resting in 

laboratory system on border, the image will be such, 
as shown on the fig. 2.1 a. If the pressure on both 

parties of border is identical, and bricks are 

identical, each brick will contain the same quantity 

of continuum. Therefore the forces, which act on 

the wave-tool on the part of a continuum and on the 

part of a flux, will be identical. Hence, the resulting 
force acting on a wave-tool will be equal to zero. 

0 CFR FFF  

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

Let's assume now, that the velocity of the 

flux in laboratory frame is vF, and the wave-tool 

moving along border of a flux with velocity vB (fig. 
2.1b). In the article [1] we have shown, that, in the 

model, of the world of waves, offered by us, the 

transition between frames of reference is 
accomplish in correspondence with Lorentz 

transformations. The transformation of velocities is 

executed in correspondence with Lorentz 
transformation also. In system of the wave-tool, the 

velocity of a flux vF' will be result of a relativistic 

velocity addition of the flux vF and wave-tool vT 

velocities, measured in laboratory frame. Therefore 

relativistic contraction of net, bounded with a 

flux, will differ from contraction of net located in 

the environmental continuum. Hence, numbers of 
"bricks", which adjoin to a moving body on the part 

of a flux and from the party "fixed" of continuum, 

will be various.  

As the contraction is caused by transition of 
the observer in system of the wave-tool, but not to 

any action on continuum or flux, the quantity of 

continuum contained in everyone brick remains 
constant. Thus, from "point of view" of the moving 

wave-tool, the pressure in a flux will not be equal to 

Figure 6 a. The component of a field Ey from 

the point of view of laboratory system. 
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Figure 6 b. The component of a field Ey from 

the point of view of system moving along an 

axis x. 
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Figure 7 a. The image from the 
point of view of wave-tool, resting 

in laboratory system. 
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Figure 7 b. The image from the point of 

view of wave-tool, moving in laboratory 

system with velocity vB. 
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pressure in an environmental continuum. Or else, in 

frame of the moving wave-tool take place a pressure 

drop. As was shown above, the pressure drop in 
medium cause a resulting force, which act on the 

wave-tool. In this case force will be guided 

perpendicularly to border of a flux. If the wave-tool 

is positive and direction of flux velocity coincides 
with a direction of wave-tool velocity, the force will 

be directed to the flux. If the velocities of the wave-

tool and flux have opposite directions, the force will 
have direction from the flux. Let's found the 

numerical value of this force. We formulate a 

problem as follows: Let's spot value and direction 

of resulting force acting on the wave-tool 

situated on the border of flux in laboratory 

system, as function from flux velocity vF and 

wave-tool velocity vB. 
In this problem there are three reference 

frames: 

- the laboratory system; 
- the flux system; 

- the system of the wave-tool. 

Let's mark the following circumstances. 

1. The laboratory system is picked so that 
density of a flux was equal to density of an 

environmental continuum. It allows excluding 

influence of static difference of density, which we 
have considered in the first section.  

2. We know the transformation rules for scale in 

case of transition from a own frame in other system. 
Therefore, if the moving object is observed by two 

observers A and B, for transformation of scale from 

system A in system B it is necessary at first to pass 

from system A in own system, and then from own 
system in system B. 

3. Two forces can be compared, only if they are 

conversed to the same frame of reference. 
Proceeding from these notes, the algorithm 

for definition of force acting on the wave-tool 

situated on border of a flux, will be the following: 
- the pressures of the continuum and flux in 

laboratory system is considered p0; 

- the pressure of the flux in it own system is 

determined; 
- the pressures of a continuum and flux in system of 

the wave-tool are determined, thus the resulting 

force is determined which act on the wave-tool in 
its own system. 

- the resulting force acting on the wave-tool, is 

recalculated in laboratory system. 

The coefficients, used in this section, will have the 
following significance: 

- T a wave-tool; 

- F - flux; 
- C - the continuum - concerns to laboratory system; 

- absence of the stroke designate - that the 

measuring is executed in laboratory system. 

- The stroke designates - that the measuring is 
executed in a flux system; 

- Two strokes designate - that the measuring is 

executed in wave-tool frame; 

By a coefficient 0 we shall designate an equilibrium 
value of pressure. In other words we mark with 0 

the values (for example densities or pressures), 

which take place in any frame of reference at 
absence of any opportunity of comparison, i.e. at 

absence in medium of inhomogeneities. 

 

 

 

 

 

 

 

 

 
 As well as in the first section, we shall 

consider that the wave-tool represents either 

surplus, or deficit of a continuum, i.e. density, in 
comparison with an equilibrium state. Let the wave-

tool goes along border of the flux, and the direction 

of the wave-tool velocity coincides with a direction 
of velocity of a flux (fig. 8). 

 If from the point of view of laboratory 

system the flux pressure is equilibrated by 

environmental continuum, i.e. pF = p0, hence, pF = 

pF- p0 = 0. Therefore resulting pressure acting on a 
wave-tool, located on border of a flux and resting in 

laboratory system, will be equal to zero. 

 Pressure of a flux in own frame: 

2
0

2 11' FFF
F

F
F pp

p
p 


       (18) 

Where  
2

2

c

vF
F    and    

2)(1

1

F

F





      (19) 

 Let wave-tool goes along flux border with 

velocity vT. We pass in a frame of a wave-tool. 

Velocity of a continuum in wave-tool frame: 

TC vv ' .     (20) 

Velocity of a flux in system of a wave-tool 

2
1

"

c

vv

vv
v

TB

TF
F




 ,           (21) 

or     
TF

TF
F










1

"             (22) 

The pressure of a flux in system of a wave-
tool is more than pressure of a flux in own system, 

Figure 8. Wave-tool goes along border A-A of a flux. 
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thus coefficient of contraction of length, and, hence, 
and augmentation of pressure, will be: 

2)"(1

1
"

F

F





 .  (23) 

We converse (23) considering the (22): 

   22

2

1

1

1
1

1
"

TFTF

TF

TF

TF

F


































    (24) 

 
Thus, flux pressure  in system of a wave-tool:  

'"" FFF pp   

Or, considering (18): 

F

F

F

F
FF p
p

p







"
"" 0 .    (25) 

Pressure of a continuum in the wave-tool system: 

0""" ppp CCCC   ,   (26) 

where:  
2)"(1

1
"

C

C





 , 

but as:    T
BC

C
c

v

c

v
 " , 

it is possible to note: T

T

C 


 



2)(1

1
" .  (27) 

The difference of pressures in wave-tool system: 


















 T

F

F
C

F

F
CF pppp 








 "
"

"
"" 00 . (28) 

It means that if the direction of velocity of the 
wave-tool coincides with a direction of flux 
velocity, from the point of view of the wave-tool the 
continuum will be more squeezed, and the flux less 
squeezed, than in laboratory system. 

Let's substitute in (28) values of coefficients 
of scale transformation according to expressions 
(19), (24) and (27). We receive:  

2
0

2
0

2222

2

0

0
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221

1)1(
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""

T

TF

T

TTFFTFTF
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



































Finally:        TFTCF ppp 0""              (29) 

The expression (29) gives the difference of 
the pressures acting from the flux and continuum on 
section S of the wave-tool and measured in system 
of the wave-tool. S coincides with border of a flux. 
Or else, this is resulting pressure in wave-tool 

system. The resulting force in the wave-tool system 

in this case:         TFBpSpSF 0"  . 

 
 
 
 
 
 
 
 
 
 
 
 

In laboratory system the same force will be: 

TF
B

Sp
F

F 


0

"
 .    (30) 

Now we assume, that the velocity of a flux 
varies linearly along the axis y (fig. 9).  

Let's designate:     
y

v

c

p

yy

vv

c

p
B











2

0

21

21

2

0      (31) 

We use parameter, which we have entered in the 

first part:       VySyySq 
21      (32) 

In view of expressions (31) and (32) formula (30) 
for force acting on the wave-tool will take a view: 

BvF T .    (33) 

The vector B must be directed on the axis z. In this 

case:     BvBvF TT qq  .          (34) 

The sign of q will determine the direction of force 
in relation to axis y. 

 

CONCLUSIONS 
 

1. The wave-tool interacts with a pressure 
drop as the electric charge interacts with a free 
electric field. 

2. The interaction of the wave-tool with flux 
is described by the same formula as interaction of 
the electrical charge with a magnetic field if to 
assume, that the value of a vector B is proportional 
to derivative velocity on spatial coordinate. 

The deduction for a case of a motion of the 
wave-tool under an arbitrary angle relatively to 
border of flux will be given in the following article. 
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Figure 9. The reciprocal arrangement of vectors  
                vT, B and F. 
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