У.Д.К.:634.86:[581.132+631.541.11] (478)

ПОКАЗАТЕЛИ ФОТОСИНТЕТИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ СТОЛОВЫХ СОРТОВ ВИНОГРАДА ПРИ ПРИВИВКЕ НА РАЗЛИЧНЫЕ ПОДВОИ

АНТОНИНА ДЕРЕНДОВСКАЯ, А. ШТИРБУ

Государственный аграрный университет Молдовы

Abstract. Researches on photosynthetic activity of table grape varieties, introduced in Republic of Moldova: Loose Perlette, Summer Muscat, Monukka and Italia, grafted on different rootstocks were carried out. It was shown, that at grafted scion varieties on high vigour stocks 44-53M and B×R 5BB the Leaf Area Surface, Leaf Area Duration, Dry Plant Biomass and absorbed of Photosynthetic Activity Radiation coefficient increases. At a grafted on moderate vigour stocks B×R SO4 and R×R 101-14 increase of Unit Leaf Rate and Crop Growth Rate is observed.

Keywords: Grafting, Photosynthetic activity, Rootstock, Scion, Table grape varieties

ВВЕДЕНИЕ

Фотосинтетическая деятельность целых растений зависит от размеров ассимиляционной поверхности, характера ее размещения в пространстве и хода формирования на протяжении вегетации (Амирджанов, 1980). По данным К.Д. Стоева (1983) параметры роста листовой поверхности у привитых растений винограда сильно варьируют, в зависимости как от сортовых особенностей, так и подвоя на котором они привиты. В свою очередь, А.Т. Мокроносов (1983) отмечает, что высокая фотосинтетическая активность растений становится фактором высокой продуктивности только при условии, если этот признак сочетается с лучшим ассимиляционным потенциалом и с оптимальной структурой ростовых процессов. Исходя из этого, необходимым является изучение ряда основных фотосинтетических показателей во взаимосвязи с ростовыми процессами и продуктивностью. В связи с этим, целью исследований явилось изучение показателей фотосинтетической деятельности у столовых сортов винограда, зависимости биологических особенностей и подвоя, на котором они привиты.

МАТЕРИАЛ И МЕТОДЫ

Исследования проведены в период 2008-09 гг. на интродуцированных столовых сортах винограда: Loose Perlette и Summer Muscat (гибриды между сортами европейско-азиатского вида *Vitis vinifera* L.), Monukka (представитель группы восточных сортов *Convar orientalis* Negr.), Italia (представитель группы сортов северной Африки *Convar nord Africa* Gram.), являющихся клонами американской селекции FPS (Foundation plant service, University of California). Исследуемые сорта были привиты на подвои B×R 5BB, B×R SO4, R×R 101-14 и 44-53M.

Полевые опыты проведены на коллекционном участке SRL "Sauron", в условиях Центральной зоны Республики Молдова. Лабораторные анализы выполнены на кафедрах ботаники и физиологии растений, виноградарства ГАУМ.

В процессе исследований определяли: индекс листовой поверхности (ИЛП) — отношение площади листовой поверхности куста к площади его питания, в M^2/M^2 , хлорофилловый индекс — отношение суммарного содержания хлорофилла в растениях к их площади питания, в Γ/M^2 (Ламан и др, 1996); фотосинтетический потенциал (ФП) - сумма ежедневных площадей листьев кустов 1 га за период от начала распускания почек до полной зрелости ягод, в млн. M^2 •сут./га, чистую продуктивность фотосинтеза (ЧПФ) — прирост сухой биомассы в граммах за определенный промежуток времени, отнесенный к единице листовой поверхности, в г абс. сух. в-ва/ M^2 •сут., КПД ФАР — отношение количества энергии, запасенной в абс. сух. биомассе растений, к количеству поглощенной радиации, в % (Амирджанов, 1982). Математическую обработку результатов исследований проводили в табличном редакторе MS Excel 2007 методом дисперсионного и корреляционного анализов (Доспехов, 1979).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

ИЛП является одним из основных показателей, характеризующих способность листьев поглощать солнечную энергию (Ламан и др., 1996). Определение ИЛП нами проведено в период максимального развития ассимиляционной поверхности, в фазу созревания ягод. Установлено, что ИЛП изменяется в зависимости, как от биологических особенностей сортов, так и подвоя, на котором они привиты. На 3-й год вегетации ИЛП увеличивается у сортов Мопикка и Summer Muscat (с большей облиственностью растений), варьируя от 2,4 до $3.4 \text{ м}^2/\text{м}^2$, по сравнению с Loose Perlette и Italia $-2.2-2.5 \text{ m}^2/\text{м}^2$ (рис. 1).

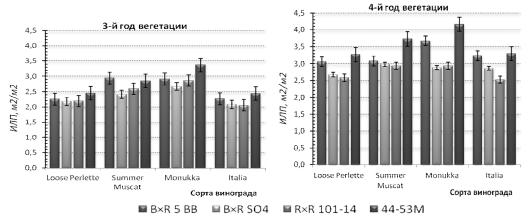


Рис. 1. Индекс листовой поверхности (ИЛП) у столовых сортов винограда, привитых на различные подвои, m^2/m^2 . Фаза созревания ягод. 2008-2009 гг.

На 4-й год ИЛП возрастает до 2,9-4,2 (Monukka), 2,9-3,7 (Summer Muscat), 2,6-3,3 (Loose Perlette) и 2,5-3,3 м 2 /м 2 (Italia), в зависимости от подвоя. Характерно, что в фазу созревания ягод ИЛП, независимо от биологических особенностей сортов винограда, увеличивается в 1,1-1,4 раза при их прививке на сильнорослые подвои 44-53М и В×R 5ВВ.

Р.М. Джиффорд и К.Л. Дженкинс (1987) отмечают, что оптимальных размеров ассимиляционная поверхность достигает при поглощении ею 95% падающей лучистой энергии и представляет собой «критический индекс листовой поверхности». По данным А.А. Ничипоровича (1972) у большинства с.-х. культур оптимальная площадь листьев, поглощающая около 95% энергии ФАР, варьирует в пределах 4-5 м²/м². В условиях опыта на 4-й год вегетации у столовых сортов винограда листовая поверхность достигает оптимальных размеров при прививке на сильнорослые подвои (44-53М и В×R 5 ВВ).

Характерно, что в течение вегетации, с увеличением площади листовой поверхности у исследуемых сортов, наблюдаемое при их прививке на сильнорослые подвои, происходит повышение суммарного содержания хлорофилла в листьях и показателя хлорофиллового индекса. Коэффициенты корреляции между содержанием хлорофилла и площадью листовой поверхности растений винограда очень высокие (r= 0,9) (рис. 2).

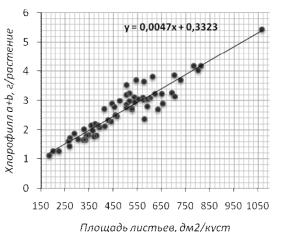


Рис. 2. Зависимость между накоплением хлорофилла (a+b) и площадью листовой поверхности привойных сортов винограда, в расчете на куст. 2008 г.

Показатель фотосинтетического потенциала листовой поверхности посева (насаждений), отражающего число дней активной работы листьев на единице площади, наиболее тесно коррелирует с урожаем и характеризует динамику формирования и степень оптимизации фотосинтетической функции растений (Третьяков и др., 2000). Установлено, что ФП (сумма ежедневных площадей листьев кустов 1 га за период от начала распускания почек до полной зрелости ягод) изменяется в зависимости от биологических особенностей сортов винограда (рис. 3).

Так, на 3-й год вегетации, у сортов с ранним сроком созревания ягод ФП составляет 1,09-1,23 (Loose Perlette) и 1,25-1,53 (Summer Muscat). У сортов со средним (Monukka) и поздним (Italia) сроками созревания ягод ФП возрастает и составляет 1,77-2,44 и 1,54-1,84 млн. м^2 -сут./га, соответственно. На 4-й год вегетации, особенно у сортов со средним и поздним периодами созревания ягод, ФП достигает 2,01-2,87 и 1,82-2,62 млн. м^2 -сут./га. Независимо от сорта, при прививке на сильнорослые подвои (44-53М и В×R 5 ВВ) фотосинтетический потенциал листовой поверхности увеличивается в 1,1-1,4 раза, по сравнению со слабо- (R×R 101-14) и среднерослыми (В×R SO4) подвоями.

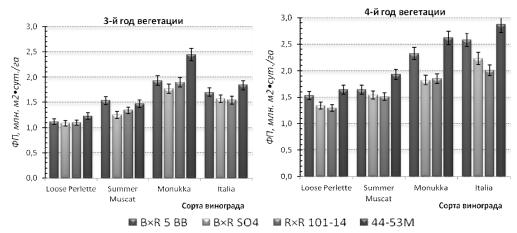


Рис. 3. Фотосинтетический потенциал ($\Phi\Pi$) у столовых сортов винограда, привитых на различные подвои, млн. м²·сут./га. 2008-2009 гг.

По данным А.Г. Амирджанова (1980) у растений винограда между показателем $\Phi\Pi$ и биологическим урожаем ($Y_{\text{биол.}}$) наблюдается прямая корреляция. Так, для ряда сортов винограда функция $Y_{\text{биол.}}/\Phi\Pi$ представляется семейством прямых линий с одинаковым углом наклона, но с различной ординатой, которая показывает, что увеличение $\Phi\Pi$ на 1 млн. м²-сут./га дает практически одинаковую прибавку $Y_{\text{биол.}}$, в среднем на 24 ц/га. Показано, что для повышения $Y_{\text{биол.}}$ на 10 ц/га, от некоторого исходного уровня, величина $\Phi\Pi$ должна увеличиваться примерно на 400 тыс. м²-сут. При $\Phi\Pi$ равном 2 млн. м²-сут./га величина $Y_{\text{биол.}}$ должна составить около 60 ц сухой биомассы/га. Однако, как отмечает автор, количественное выражение связи $Y_{\text{биол.}}/\Phi\Pi$ следует конкретизировать для различных природных условий, сортов или групп сортов, обладающих близкими биологическими и хозяйственно ценными признаками.

Показатель ЧПФ, или скорость нетто-ассимиляции, характеризующий среднюю эффективность работы единицы листовой поверхности растений по накоплению абс. сух. биомассы, зависит как от интенсивности фотосинтеза, так и дыхания, а также от скорости отмирания части фитомассы и положительно коррелирует (r=+0,9) с интенсивностью фотосинтеза (Орт и др., 1987). По данным А.Г. Амирджанова (1980) у растений винограда максимальные значения ЧПФ (до $10~\text{г/m}^2$ ·сутки) достигают в начале вегетации, в последующие периоды ЧПФ снижается до $2-5~\text{г/m}^2$ ·сутки.

Нами установлено, что в период от начала распускания почек до цветения (15.VI) у сорта Summer Muscat ЧПФ составляет 3,9-5,0 и Italia – 4,0-4,4 г/м 2 · сутки, в фазу интенсивного роста ягод (18.VII) - увеличивается до 5,0-5,7 и 6,2-7,6 г/м 2 ·сутки, соответственно. Снижение уровня ЧПФ в 2,0-2,3 (Summer Muscat) и 1,5-1,7 (Italia) раза наблюдается в период созревания ягод (17-27.VIII). Характерно, что независимо от фаз онтогенеза, у интродуцированных столовых сортов винограда рост показателя ЧПФ происходит при прививке на слабо- и среднерослые подвои ($R \times R$ 101-14 и $B \times R$ SO4) (рис. 4).

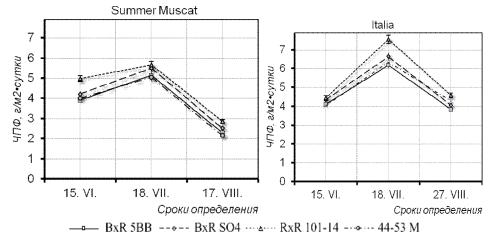


Рис. 4. Динамика чистой продуктивности фотосинтеза (ЧПФ) у столовых сортов винограда, привитых на различные подвои, в ϵ/m^2 -сут. 2009 г.

Изменение фотосинтетической деятельности растений винограда в онтогенезе связано, по-видимому, с различиями в характере донорно-акцепторных отношений. У растений винограда до фазы цветения распределение ассимилятов находит акропетальный транспорт из нижних листьев к верхушке побега, которые используются в основном на рост и развитие листовой поверхности, что указывает на сравнительно небольшие значения ЧПФ. В фазу роста ягод характерно наличие мощного аттрагирующего центра – ягод, которые потребляют основную часть ассимилятов всех листьев, что приводит к снижению темпов роста ассимиляционной поверхности и возрастанию уровня ЧПФ. После завершения роста ягод, их акцепторная активность уменьшается, а нарастание ассимиляционной поверхности вновь усиливается.

Средняя за вегетацию величина ЧПФ (У_{биол.}/ФП), характеризующая работу продукционного периода от распускания почек до созревания ягод у сорта Summer Muscat составляет 3,5-4,0 г/м 2 -сутки, у Italia - 2,6-3,0 г/м 2 -сутки (рис. 5). Наблюдаемые сортовые различия значений ЧПФ связаны, повидимому, с разной продолжительностью продукционных периодов, которые составляют у сортов Summer Muscat и Italia, соответственно, 120 и 150 дней.

Характерно, что при прививке на сильнорослые подвои показатель ЧПФ уменьшается в 1,1-1,2 раза, по сравнению со средне- и слаборослыми подвоями. Наблюдаемая тенденция снижения ЧПФ связана с увеличением площади листовой поверхности растений винограда при произрастании их на сильнорослых подвоях, независимо от сортовых особенностей. Коэффициенты корреляции между ЧПФ и площадью листовой поверхности кустов очень высокие (r=-0,99) (рис. 6).

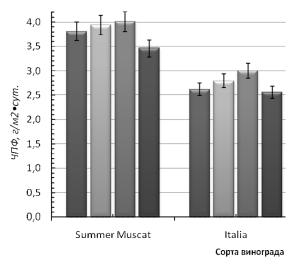


Рис. 5. Средняя за продукционный период ЧПФ у столовых сортов винограда, привитых на различные подвои, в z/m^2 -сут. 2009 г.

■ B×R 5 BB ■ B×R SO4 ■ R×R 101-14 ■ 44-53M

Рис. 6. Зависимость ЧПФ (средняя за продукционный период) от площади листовой поверхности (Л) у столовых сортов Summer Muscat и Italia. 2009 г.

По-видимому, при выращивании растений винограда на одноплоскостной вертикальной шпалере, в кроне кустов с максимальным развитием ассимиляционной поверхности происходит затенение листьев, которые функционируют в условиях недостатка солнечной радиации и импортируют ассимиляты для поддержания нормального дыхания, что подтверждает положения, описанные в работах Д. Орт и др. (1987).

По данным А.Г. Амирджанова (1980) у растений винограда площадь листьев не всегда определяет уровень ЧПФ. Для объяснения этого явления автор обратил внимание на элементы плодоношения. Показано, что при одинаковом развитии площади листовой поверхности кустов с увеличением коэффициента плодоношения (отношение количества гроздей к числу развитых побегов на кусте), коэффициента хозяйственной эффективности

фотосинтеза Кхоз (т.е. доли гроздей в общей биомассе) закономерно повышается и средняя за вегетацию ЧПФ.

Интегрирующим показателем фотосинтетической деятельности растений в фитоценозах является КПД ФАР. Он характеризует эффективность использования фитоценозом падающей ФАР на всю площадь посева или насаждения, в зависимости от видового состава, структуры РП и др. (Ничипорович, 1972).

КПД ФАР определяли с учетом данных по приходу суммарной ФАР (ккал/см²) за период формирования $Y_{\text{биол.}}$ и калорийности биомассы растений винограда, составляющей в среднем 4 ккал/г абс. сух. в-ва (Амирджанов, 1980). Установлено, что на 4-й год вегетации у исследуемых столовых сортов винограда значения КПФ ФАР за продукционный период составляют 0,8-0,9% (Summer Muscat) и 0,7-0,8% (Italia) и возрастают в 1,1-1,2 раза при прививке на сильнорослые подвои (рис. 7).

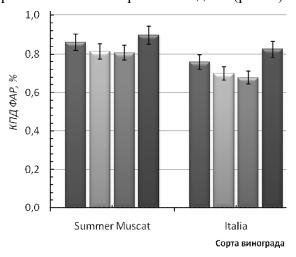


Рис. 7. КПД ФАР столовых сортов винограда, привитых на различные подвои, в %. Фаза созревания ягод. 2009 г.

■ B×R 5 BB ■ B×R SO4 ■ R×R 101-14 ■ 44-53M

А.А. Ничипоровичем (1972) разработана система объективной оценки фотосинтетической продуктивности фитоценозов. Продуктивность, при которой растения посева или насаждения накапливают за время фактической вегетации ФАР с суммарным КПД всего 0,5-1,0 %, считается низкой; продуктивность посевов с КПД 1-2 % - средней, 2-3 % - хорошей, 3-4 % - высокой и 4-5% очень высокой. В исследованиях, проведенных в контролируемых условиях при оптимизации всех факторов среды (где лишь ФАР являлась лимитирующим фактором), показано, что КПД ФАР по продуктивности в широком диапазоне ее интенсивности (~50-150 вт/м²) составил примерно 6%, что отвечает теоретически максимальной величине.

А.Г. Амирджановым (1980), при сопоставлении фактических данных по КПД ФАР с теоретически возможными, показано, что даже при очень высоких урожаях, уровни КПД характеризуют виноградные насаждения как РП низкой продуктивности (КПД ФАР около 1%). Причина относительно низких КПД ФАР виноградников обусловлена не биологическими особенностями растений, а способами их возделывания. По данным автора, необходимо дальнейшее

совершенствование технологии возделывания растений винограда (горизонтальная шпалера, выведение или интродукция новых высокопродуктивных сортов и др.) с тем чтобы повысить КПД ФАР до 4-5%.

ВЫВОДЫ

- 1. Установлено, что прививка столовых сортов винограда на распространенные в практике подвои оказывает значительное влияние на параметры роста кустов и позволяет направленно регулировать фотосинтетическую деятельность и продуктивность растений;
- 2. Независимо от биологических особенностей сортов, при прививке на средне- (B×R SO4) и слаборослые (R×R 101-14) подвои наблюдается снижение роста побегов и ассимиляционной поверхности у растений винограда, но возрастание чистой продуктивности фотосинтеза, особенно в фазу роста ягод;
- 3. При прививке исследуемых сортов винограда на сильнорослые подвои (44-53М и В×R5ВВ) наряду с параметрами роста растений происходит увеличение биологической продуктивности, показателя КПД ФАР, который положительно коррелирует с индексом листовой поверхности и хлорофилловым индексом.

БИБЛИОГРАФИЯ

- 1. Амирджанов А.Г. Методические указания по учету и контролю важнейших показателей фотосинтетической деятельности винограда в насаждениях для ее оптимизации. Баку, 1982. 59 с.
- 2. Амирджанов А.Г. Солнечная радиация и продуктивность виноградника. Ленинград: Гидрометеоиздат, 1980. 207 с.
- 3. Доспехов Б.А. Методика полевого опыта. Москва: Колос, 1979, 416 с.
- 4. Джиффорд Р.М., Дженкинс К.Л. Использование достижений науки о фотосинтезе в целях повышения продуктивности культурных растений. В: Фотосинтез, т. 2. Москва: Мир, 1987, с. 365-410.
- 5. Ламан Н.А., Самсонов В.П., Прохоров В.Н. Методическое руководство по исследованию смешанных агрофитоценозов. Минск: Навука і тэхніка, 1996, 101 с.
- 6. Мокроносов А.Т. Интеграция функций роста и фотосинтеза. В: Физиология растений. 1983, т. 30, № 5, с. 868-880.
- 7. Ничипорович А.А. Фотосинтетическая деятельность растений и пути повышения их продуктивности. В: Теоретические основы фотосинтетической продуктивности. Москва: Наука. 1972, с. 511-527.
- 8. Орт Д., Говинджи, Уитмарш Д. и др. Фотосинтез, т. 1. Москва: Мир, 1987. 728 с.
- 9. Орт Д., Меландри Б.А., Юнге В. и др. Фотосинтез, т. 2. Москва: Мир, 1987, 460 с.
- 10. Перстнев Н.Д. Виноградарство. Кишинев: Центральная типография, 2001, 603 с.
- 11. Стоев К.Д. Физиология винограда и основы его возделывания, т. 2. София: Издательство болгарской АН, 1983, 382 с.
- 12. Третьяков Н.Н. и др. Физиология и биохимия сельскохозяйственных растений. Москва: Колос, 2000, 640 с.