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1. INTRODUCTION 

 

 With higher order tensors (four, six, eight, 
etc.) we meet in the study of relations between 
stress and strain. In the case of reversible processes 
constitutive equations are written in the form 
 
        ... klpqnmijnmpqklpqnmijnmpqnmijnmij dddcddcdct     (1) 

 
where - ijij dt ,  are denoted stress strain tensors 

respectively, and by - ,, ijnmpqijnm cc  ijnmpqklc  - the 

elasticity constants tensors of the order of the 
fourth, sixth and eighth. 

From symmetry of stress, strain tensors and 
the laws of thermodynamics, for tensors of elasticity 
constants resulting the following symmetry 
relations 

 

                  nmijijmnjinmijnm cccc  ,         (2) 

 
 nmijpqijmnqpijmnpqjinmpqijnmpq ccccc  

 

                       ijpqnmpqnmij cc                       (3) 

 
 ijnmqpklijmnpqkljinmpqklijnmpqkl cccc  

 
                 mpqijknmijpqklijnmpqlk ccc ln .            (4) 

 
 Depending on the type of interactions 
among atoms or molecules, the relations (2), (4) the 
additional information can be added. 
 If, for example, interactions between atoms 
or molecules are central (ionic bonding), the elastic 
constant tensors of any order is totally symmetrical. 
Recall that a tensor is totally symmetrical if it is 
symmetric in relation to all pairs of indices. In the 
case of the fourth order tensors the relation takes 
place 
 
                                injmijnm cc  .                           (5) 

 

 The material symmetry which is expressed 
quantitatively by the planes of symmetry and 
symmetry axes of different order, leads to a 
reduction in the number of independent constants of 
elasticity. 
 

 
2. MATRIX REPRESENTATION OF 

FOURTH ORDER TENSOR 
 

 The experimental data for components of 
elasticity constants tensors shown in the 
crystallographic coordinate system, containing only 
independent sizes.      
 Calculation of elastic constants in an arbitrary 
coordinate system is simplified considerably if 
higher order tensors are represented by composed 
matrix [1]. The fourth order tensor can be presented 
in the form of 
 

                              nmijijnm cc )( ,                          (6) 
 

where - nmijc )(  is a square composed matrix of the 

second order, each element of which is also a square 
matrix, i.e. 
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      (7) 
 

 For the fourth order tensor which has the 
symmetry properties (2) the components of 
composed matrix are expressed only by 21 
independent constants. The 21 independent 
constants can be presented as a 21x1 column 
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matrix, the elements which we will denote by Ia , 

where I=1,2,...,21. 
 Thus, the tensor of elasticity constants must 
be expressed as follows 
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(8) 
 

 If the tensor is totally symmetrical relations 
may occur  
 

 , , , 6124758 aaaaaa   
 

           111410131819  , , aaaaaa            (9) 

 
 In the case of orthotropic materials the 
matrix of elasticity constants is expressed as 
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            (10) 
 

 For materials with cubic symmetry (11). 
             The relationships between the stress and 
strain in an arbitrary coordinate system in the linear 
approximation is determined from the relation (12) 
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where ijr  the matrix of rotation is denoted which is 

used to determine the position given by the 
coordinates system to the crystallographic system. 
Rotation matrix is obtained as a result of three 
successive rotations and are calculated according to 
the formula 
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were 321  ,,  - are Euler angles. 

 

3. A MATRIX REPRESENTATION OF 
SIX ORDER TENSOR 

 

 In case of nonlinear relations between stress 
and strain the six and eight order tensors are 
intervened, and these tensors can be presented by 
composed matrix. In base of symmetric relations 
(2)-(4) is posible to pass from two indexs notations 
to one index after Viogt [2] convention 
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6~12,5~13,4~23,3~33,2~22,1~11 . 
 
 Adopting this convention, we will write 
 

KMFijmnrsKMijnm cccc    ,  

 

KMFLijmnrskq cc  , 

 
where the small letters have the values 1,2,3, but big 
1,2,...,6. In plus, the symmetric relations (1) – (3) 
give 
 

KFMFMKMKFKMFMKKM cccccc    ,  

 
 

 LFKMMKLFKMLFMKFLKMFL ccccc
 

... FKLMFLMKFLKMLFMK cccc  

 

 Matrixes KMFLKMFKM ccc ,,  don’t 

represent the tensor in obtained meaning. Therefore, 
in rule of components transformation at rotation of 
reference system doesn’t directly given the rotation 
matrix r.  
 It can be demonstrated, that for these matrixes 
can be used the known rules of components 
transformation, so 
 

IJMJKIKM cRRc   

 

IGTFTMGKIKMF cRRRc   
 

IGTULUFTMGKIKMFL cRRRRc  , 
 
 
were K,M,...,U=1,2,…,6.  R matrix is 
presented [3] 
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 The matrix  GTIC  we can present 

C'

c
1

c
2

c
3

c
4

c
5

c
6

c
2

c
7

c
8

c
9

c
10

c
11

c
3

c
8

c
12

c
13

c
14

c
15

c
4

c
9

c
13

c
16

c
17

c
18

c
5

c
10

c
14

c
17

c
19

c
20

c
6

c
11

c
15

c
18

c
20

c
21

























c
2

c
7

c
8

c
9

c
10

c
11

c
7

c
22

c
23

c
27

c
25

c
16

c
8

c
23

c
27

c
28

c
29

c
30

c
9

c
24

c
28

c
31

c
32

c
33

c
10

c
25

c
29

c
32

c
34

c
35

c
11

c
26

c
30

c
33

c
35

c
36

























c
3

c
8

c
12

c
13

c
14

c
15

c
8

c
23

c
13

c
28

c
29

c
30

c
12

c
27

c
37

c
38

c
39

c
40

c
13

c
28

c
38

c
41

c
42

c
43

c
14

c
29

c
39

c
42

c
44

c
45

c
15

c
30

c
40

c
43

c
45

c
46



























































































c
4

c
9

c
13

c
16

c
17

c
18

c
9

c
24

c
28

c
31

c
32

c
33

c
13

c
28

c
38

c
41

c
42

c
43

c
16

c
31

c
41

c
47

c
48

c
49

c
17

c
32

c
42

c
48

c
50

c
51

c
18

c
33

c
43

c
49

c
51

c
52

























c
5

c
10

c
14

c
17

c
19

c
20

c
10

c
25

c
29

c
32

c
34

c
35

c
14

c
29

c
39

c
44

c
44

c
45

c
17

c
32

c
42

c
48

c
50

c
51

c
19

c
34

c
44

c
50

c
53

c
54

c
20

c
35

c
45

c
51

c
54

c
55

























c
6

c
11

c
15

c
18

c
20

c
21

c
11

c
26

c
30

c
35

c
35

c
36

c
15

c
30

c
40

c
43

c
45

c
46

c
18

c
33

c
43

c
49

c
51

c
52

c
20

c
35

c
45

c
51

c
54

c
55

c
21

c
36

c
46

c
52

c
55

c
56

































































































































































































































 
 

 So, the tensor of elastic constants of fourth 
order is expressed by 21 independent components, 
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but six order tensor by 56. These 56 components are 
presented by column matrix with 56x1 dimensions.  
 The number of independent constants of 
elasticity is reduced, if materials have and other 
elements of symmetry. For materials with cubic 
symmetry the number of elasticity constants of 
stress tensor of six order is decreased up to six.  
 The only non-zero constants of elasticity 
tensor of six order are  
 

 ,33337222221111 CcCcCc 

 22323122711331122 CcCcCcCc

,CcCc 2332713312   

 2553414416456511238   , , CcCcCcCc
,Cc 36646   

 26636244311662115519 CcCcCcCc

3554434441 CcCc  . 

 
 Therefore, the elastic behavior of material of 
cubic symmetry in approximation  
 

MNNMININI dd)C(dCt   
 





























7

812

101419

11152021

913171816

235641

a.....

aa....

aaa...

aaaa..

aaaaa.

aaaaaa

C  

 
is described by 9 independent constants; 3 
components by forth order tensor 741 ,, aaa  and six 
independent components of six order tensor 

511916821 ,,,,, cccccc .  
 In case of isotropic material, among 
independent constants of forth order tensor the 
relationship takes place 
 

2
71

4
aa

a


 , 

but for elasticity constants of six order tensor tree 
more relations are obtained 
 

)(
2

1
8216 ccc  , )(

4

1
2119 ccc   

)23(
8

1
82151 cccc  . 

 
 Therefore, the governing equations of second 
order in case of isotropic materials are expressed 
from only 5 independent constants.  

 If interaction among atoms is central, than the 
following relations exist 

3
1

47
a

aa  , 

6

7 12
51168

cc
ccc


 , 

 

so, in case of one isotropic material with central 
interactions, the governing equations of second 
order are expressed only by tree independent 
constants.  

 In case of governing equations of third 
order may appear the eight order tensors. These 
tensors are expressed by square matrix of six order, 
each element represents the six order matrix. 

 
 

CONCLUSIONS 
 
The possibility of matrix presentation of 

higher order tensors essentially simplifies the 
mathematical modeling of nonlinear behavior of 
anisotropic materials. It was found that the 
constitutive equations of the second order in the 
general case of anisotropy are expressed by 77 
independent elastic constants.  

For cubic symmetry materials the number 
of independent constants of elasticity is reduced up 
to 9, (3 independent elastic constants for forth order 
tensor and 6 independent constants for six order 
tensor). In case of isotropic materials the number of 
independent constants of elasticity is reduced up to 
5, if interaction between atoms is central, than 
number of independent constants is reduced up to 3. 
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